Trade Credit and International Stock Return Comovement

Rui Albuquerque, Tarun Ramadorai and Sumudu W. Watugala

SBS, Oxford-Man, CEPR

August 2010
Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).
Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).

A challenge for economists.
Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).

A challenge for economists.

What mechanisms cause shocks to economic fundamentals to be propagated across markets?
Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).

A challenge for economists.

- What mechanisms cause shocks to economic fundamentals to be propagated across markets?
- Is transmission through real channels, or only the actions of financial intermediaries?
Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).

A challenge for economists.

- What mechanisms cause shocks to economic fundamentals to be propagated across markets?
- Is transmission through real channels, or only the actions of financial intermediaries?

Significant policy-relevance:
Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).

A challenge for economists.

What mechanisms cause shocks to economic fundamentals to be propagated across markets?

Is transmission through real channels, or only the actions of financial intermediaries?

Significant policy-relevance:

Stock prices are important signals of value for resource allocation.
Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).

A challenge for economists.

- What mechanisms cause shocks to economic fundamentals to be propagated across markets?
- Is transmission through real channels, or only the actions of financial intermediaries?

Significant policy-relevance:

- Stock prices are important signals of value for resource allocation.
- Firms’ investments are potentially affected.
Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).

A challenge for economists.

- What mechanisms cause shocks to economic fundamentals to be propagated across markets?
- Is transmission through real channels, or only the actions of financial intermediaries?

Significant policy-relevance:

- Stock prices are important signals of value for resource allocation.
- Firms’ investments are potentially affected.
- Wealth shocks cause redistributions.
Much of the literature has emphasized the role of financial intermediaries.
Our Focus: Trade Credit and Cashflow Correlations

- Much of the literature has emphasized the role of financial intermediaries.
Much of the literature has emphasized the role of financial intermediaries.

Much of the literature has emphasized the role of financial intermediaries.

Our focus is on the comovement of fundamentals.
Much of the literature has emphasized the role of financial intermediaries.

Our focus is on the comovement of fundamentals.

We study trade credit links between firms in different countries.
Much of the literature has emphasized the role of financial intermediaries.

Our focus is on the comovement of fundamentals.

We study trade credit links between firms in different countries.

- Introduces a link between the fundamentals of these firms.
Our Focus: Trade Credit and Cashflow Correlations

- Much of the literature has emphasized the role of financial intermediaries.

- Our focus is on the comovement of fundamentals.
- We study trade credit links between firms in different countries.
 - Introduces a link between the fundamentals of these firms.
 - Model of return correlations and empirical tests.
The Importance of Trade Credit

- Trade credit is an important source of financing for many firms.
The Importance of Trade Credit

- Trade credit is an important source of financing for many firms.
Trade credit is an important source of financing for many firms.

Especially important in emerging markets; alternative source of growth financing when formal credit markets are thin.
The Importance of Trade Credit

- Trade credit is an important source of financing for many firms.

- Especially important in emerging markets; alternative source of growth financing when formal credit markets are thin.
The Importance of Trade Credit

- Trade credit is an important source of financing for many firms.

- Especially important in emerging markets; alternative source of growth financing when formal credit markets are thin.

- Neglected in the study of stock return comovement.
Accounts Receivable Turnover Time Series

- ALL - VW
- India - VW

Accounts Payable Turnover Time Series

- ALL-VW
- India-VW

Build a two-country, two-period model of representative firms connected by trade credit links.
Approach

1. Build a two-country, two-period model of representative firms connected by trade credit links.
 - Segmented stock markets, asymmetrically informed speculators, domestic investors.

2. Model implies cross-serial correlations of stock returns across countries.
 - Comparative statics: higher trade credit implies higher cross-serial correlation.

3. Employ firm-level data from 55 countries from 1993 to 2009, to provide empirical support for the model.
 - Producer-customer relationships, high and low trade credit firms.

4. Robustness checks.
 - Size and short-term debt double sorts.
Approach

1. Build a two-country, two-period model of representative firms connected by trade credit links.
 1. Segmented stock markets, asymmetrically informed speculators, domestic investors.

2. Model implies cross-serial correlations of stock returns across countries.

Comparative statics: higher trade credit implies higher cross-serial correlation.

Employ firm-level data from 55 countries from 1993 to 2009, to provide empirical support for the model.

Robustness checks:

- Size and short-term debt double sorts.
Approach

1. Build a two-country, two-period model of representative firms connected by trade credit links.
 - Segmented stock markets, asymmetrically informed speculators, domestic investors.

2. Model implies cross-serial correlations of stock returns across countries.
 - Comparative statics: higher trade credit implies higher cross-serial correlation.
Approach

1. Build a two-country, two-period model of representative firms connected by trade credit links.
 - Segmented stock markets, asymmetrically informed speculators, domestic investors.

2. Model implies cross-serial correlations of stock returns across countries.
 - Comparative statics: higher trade credit implies higher cross-serial correlation.

3. Employ firm-level data from 55 countries from 1993 to 2009, to provide empirical support for the model.
Approach

1. Build a two-country, two-period model of representative firms connected by trade credit links.
 - Segmented stock markets, asymmetrically informed speculators, domestic investors.

2. Model implies cross-serial correlations of stock returns across countries.
 - Comparative statics: higher trade credit implies higher cross-serial correlation.

3. Employ firm-level data from 55 countries from 1993 to 2009, to provide empirical support for the model.
 - Producer-customer relationships, high and low trade credit firms.
Approach

1. Build a two-country, two-period model of representative firms connected by trade credit links.
 - Segmented stock markets, asymmetrically informed speculators, domestic investors.

2. Model implies cross-serial correlations of stock returns across countries.
 - Comparative statics: higher trade credit implies higher cross-serial correlation.

3. Employ firm-level data from 55 countries from 1993 to 2009, to provide empirical support for the model.
 - Producer-customer relationships, high and low trade credit firms.

4. Robustness checks.
Approach

1. Build a two-country, two-period model of representative firms connected by trade credit links.
 - Segmented stock markets, asymmetrically informed speculators, domestic investors.

2. Model implies cross-serial correlations of stock returns across countries.
 - Comparative statics: higher trade credit implies higher cross-serial correlation.

3. Employ firm-level data from 55 countries from 1993 to 2009, to provide empirical support for the model.
 - Producer-customer relationships, high and low trade credit firms.

4. Robustness checks.
 - Size and short-term debt double sorts.
Basic Setup

- Two dates, \(t = 1, 2 \) and 2 countries, ‘consumer’ country \((C)\) and ‘producer’ country \((P)\).

- All investors have CARA utility with \(\gamma > 0 \) on date-2 wealth, \(W_2 \), and initial endowment \(W_1 > 0 \).

- Storage technology \(r = 0 \).

- Exogenous, random supply of shares \(z_i \), mean zero, variance \(\sigma^2 \).

- Rational expectations equilibrium, investors take prices as given and solve for asset demands. Equilibrium price is such that total stock demand equals total stock supply.
Basic Setup

- Two dates, $t = 1, 2$ and 2 countries, ‘consumer’ country (C) and ‘producer’ country (P).
- $1 - \mu_i$ investors in country $i = C, P$ invest only domestically, μ_i investors invest in both countries (speculators).

Market segmentation as in Merton (1987), Albuquerque et al., (2007). All investors have CARA utility with $\gamma > 0$ on date-2 wealth, W_2, and initial endowment $W_1 > 0$.

Storage technology $r = 0$.

Exogenous, random supply of shares z_i, mean zero, variance $\sigma^2 z_i$.

Rational expectations equilibrium, investors take prices as given and solve for asset demands. Equilibrium price is such that total stock demand equals total stock supply.
Basic Setup

- Two dates, \(t = 1, 2 \) and 2 countries, ‘consumer’ country (C) and ‘producer’ country (P).
- \(1 - \mu_i \) investors in country \(i = C, P \) invest only domestically, \(\mu_i \) investors invest in both countries (speculators).
Basic Setup

- Two dates, $t = 1, 2$ and 2 countries, ‘consumer’ country (C) and ‘producer’ country (P).
- $1 - \mu_i$ investors in country $i = C, P$ invest only domestically, μ_i investors invest in both countries (*speculators*).
- All investors have CARA utility with $\gamma > 0$ on date-2 wealth, W_2, and initial endowment $W_1 > 0$.

Storage technology $r = 0$. Exogenous, random supply of shares z_i, mean zero, variance σ_i^2.

Rational expectations equilibrium, investors take prices as given and solve for asset demands.
Equilibrium price is such that total stock demand equals total stock supply.
Basic Setup

- Two dates, $t = 1, 2$ and 2 countries, ‘consumer’ country (C) and ‘producer’ country (P).
- $1 - \mu_i$ investors in country $i = C, P$ invest only domestically, μ_i investors invest in both countries (speculators).
- All investors have CARA utility with $\gamma > 0$ on date-2 wealth, W_2, and initial endowment $W_1 > 0$.
- Storage technology $r = 0$.

Exogenous, random supply of shares z_i, mean zero, variance σ^2.

Rational expectations equilibrium, investors take prices as given and solve for asset demands.

Equilibrium price is such that total stock demand equals total stock supply.
Basic Setup

- Two dates, $t = 1, 2$ and 2 countries, ‘consumer’ country (C) and ‘producer’ country (P).
- $1 - \mu_i$ investors in country $i = C, P$ invest only domestically, μ_i investors invest in both countries (speculators).
- All investors have CARA utility with $\gamma > 0$ on date-2 wealth, W_2, and initial endowment $W_1 > 0$.
- Storage technology $r = 0$.
- Exogenous, random supply of shares z^i, mean zero, variance σ_{zi}^2.

Ramadorai (SBS, Oxford-Man, CEPR)
NIPFP-DEA Research Meeting 9/2010 8 / 27
Basic Setup

- Two dates, \(t = 1, 2 \) and 2 countries, ‘consumer’ country \((C)\) and ‘producer’ country \((P)\).
- \(1 - \mu_i \) investors in country \(i = C, P \) invest only domestically, \(\mu_i \) investors invest in both countries (speculators).
- All investors have CARA utility with \(\gamma > 0 \) on date-2 wealth, \(W_2 \), and initial endowment \(W_1 > 0 \).
- Storage technology \(r = 0 \).
- Exogenous, random supply of shares \(z^i \), mean zero, variance \(\sigma_{zi}^2 \).
- Rational expectations equilibrium, investors take prices as given and solve for asset demands.
Basic Setup

- Two dates, $t = 1, 2$ and 2 countries, ‘consumer’ country (C) and ‘producer’ country (P).
- $1 - \mu_i$ investors in country $i = C, P$ invest only domestically, μ_i investors invest in both countries (*speculators*).
- All investors have CARA utility with $\gamma > 0$ on date-2 wealth, W_2, and initial endowment $W_1 > 0$.
- Storage technology $r = 0$.
- Exogenous, random supply of shares z^i, mean zero, variance $\sigma_{z_i}^2$.
- Rational expectations equilibrium, investors take prices as given and solve for asset demands.
- Equilibrium price is such that total stock demand equals total stock supply.
Dividends

Each country has a representative firm paying a liquidating dividend at date 2.

Consumer: \[D_t^C = \varepsilon_t^C + u_t^C. \]

Producer: \[D_t^P = \alpha D_t^C + \varepsilon_t^P + u_t^P, \alpha > 0 \]
Each country has a representative firm paying a liquidating dividend at date 2.

Consumer : \(D^C_t = \varepsilon^C_t + u^C_t \).

Producer : \(D^P_t = \alpha D^C_t + \varepsilon^P_t + u^P_t, \alpha > 0 \)

All shocks normal, \(\sigma^2_{\varepsilon^C}, \sigma^2_{u^C}, \sigma^2_{\varepsilon^P}, \sigma^2_{u^P} \).
Dividends

- Each country has a representative firm paying a liquidating dividend at date 2.

 Consumer : \(D_t^C = \varepsilon_t^C + u_t^C. \)

 Producer : \(D_t^P = \alpha D_t^C + \varepsilon_t^P + u_t^P, \alpha > 0 \)

- All shocks normal, \(\sigma_{\varepsilon_C}^2, \sigma_{u_C}^2, \sigma_{\varepsilon_P}^2, \sigma_{u_P}^2. \)

- Level of trade credit is \(\alpha. \) Note also: \(\text{E}[D_t^P D_t^C] = \alpha \sigma_{\varepsilon_C}^2 \)
Dividends

- Each country has a representative firm paying a liquidating dividend at date 2.

 Consumer: \(D_t^C = \epsilon_t^C + u_t^C \).

 Producer: \(D_t^P = \alpha D_t^C + \epsilon_t^P + u_t^P, \alpha > 0 \)

- All shocks normal, \(\sigma_{\epsilon_C}^2, \sigma_{u_C}^2, \sigma_{\epsilon_P}^2, \sigma_{u_P}^2 \).

- Level of trade credit is \(\alpha \). Note also: \(\mathbb{E}[D_t^P D_t^C] = \alpha \sigma_{\epsilon_C}^2 \)

- We leave unmodeled the choice of trade credit. Reduced form, so we can focus on asset pricing effects.
Speculators hold assets from both two countries, have better information than domestics.
Speculators hold assets from both two countries, have better information than domestics.

Speculators learn both shocks, ε^C and ε^P.

$\bar{D}_C t = \varepsilon^C t$ and $\bar{D}_P t = \alpha \varepsilon^C t + \varepsilon^P t$,

$\bar{D}_i t$ is the speculators' expectation of the future dividend conditional on the signal, u_i is the forecast error made by speculators.
Speculators hold assets from both two countries, have better information than domestics.

Speculators learn both shocks, ε^C and ε^P.

Write $D^C_t = \bar{D}^C_t = \varepsilon^C_t$ and $D^P_t = \alpha \varepsilon^C_t + \varepsilon^P_t$, then dividends can be represented as:

$$D^C_t = \bar{D}^C_t + u^C_t$$
$$D^P_t = \bar{D}^P_t + \alpha u^C_t + u^P_t.$$
Speculators hold assets from both two countries, have better information than domestics.

Speculators learn both shocks, ε^C and ε^P.

Write $\bar{D}_t^C = \varepsilon_t^C$ and $\bar{D}_t^P = \alpha \varepsilon_t^C + \varepsilon_t^P$, then dividends can be represented as:

\[
D_t^C = \bar{D}_t^C + u_t^C \\
D_t^P = \bar{D}_t^P + \alpha u_t^C + u_t^P.
\]

\bar{D}_t^i is the speculators’ expectation of the future dividend conditional on the signal, u^i is the forecast error made by speculators.
Speculators hold assets from both two countries, have better information than domestics.

Speculators learn both shocks, ε^C and ε^P.

Write $\bar{D}_t^C = \varepsilon_t^C$ and $\bar{D}_t^P = \alpha \varepsilon_t^C + \varepsilon_t^P$, then dividends can be represented as:

$$D_t^C = \bar{D}_t^C + u_t^C$$
$$D_t^P = \bar{D}_t^P + \alpha u_t^C + u_t^P.$$

\bar{D}_t^i is the speculators’ expectation of the future dividend conditional on the signal, u^i is the forecast error made by speculators.

Domestic investors learn from prices, but only from local prices.
Asset Demands

- **Domestic demand:**

\[
\theta^i_t = \frac{E^d_t \left[D^i_{t+1} - P^i_t \right]}{\gamma \text{Var}^d_i \left[D^i_{t+1} - P^i_t \right]}.
\]
Asset Demands

- **Domestic demand:**

\[
\theta_t^i = \frac{E_t^d [D_{t+1}^i - P_t^i]}{\gamma \text{Var}^d_t [D_{t+1}^i - P_t^i]}.
\]

- **Speculator demand:**

\[
\begin{bmatrix}
\eta^C \\
\eta^P
\end{bmatrix} = \frac{1}{\gamma \sigma_{u_P}^2} \begin{bmatrix}
\frac{\sigma_{u_P}^2 + \alpha^2 \sigma_{u_C}^2}{\sigma_{u_C}^2} (\bar{D}_{t+1}^C - P_t^C) - \alpha (\bar{D}_{t+1}^P - P_t^P) \\
\bar{D}_{t+1}^P - P_t^P - \alpha (\bar{D}_{t+1}^C - P_t^C)
\end{bmatrix}.
\]
Equilibrium

Equilibrium prices:

\[P^C_t = \tilde{D}^C_{t+1} - b_{CC} \left(\tilde{D}^C_{t+1} - E^d_t \left(\tilde{D}^C_{t+1} \right) \right) - b_{CP} \left(\tilde{D}^P_{t+1} - E^d_t \left(\tilde{D}^P_{t+1} \right) \right) - h_{CC} z^C_t - h_{CP} z^P_t \]

We are interested in cross-country return correlation, and how it varies with level of trade credit (\(\alpha \)).
Equilibrium

- Equilibrium prices:

\[
P^C_t = \bar{D}^C_{t+1} - b_{CC} \left(\bar{D}^C_{t+1} - E_t \left(\bar{D}^C_{t+1} \right) \right) - b_{CP} \left(\bar{D}^P_{t+1} - E_t \left(\bar{D}^P_{t+1} \right) \right) - h_{CC} z_t^C - h_{CP} z_t^P
\]

- We are interested in cross-country return correlation, and how it varies with level of trade credit (α):

\[
E \left[D^P_{t+1} - p^P_t | p^C_t \right] = \frac{\text{Cov} \left(p^C_t, D^P_{t+1} - p^P_t \right)}{\text{Var} \left(p^C_t \right)} p^C_t
\]
Comparative Statics on Trade Credit
Covariance of Future Producer Return with Current Consumer Return
Baseline Empirical Methodology
Our Empirical Methodology

- Create three financial ratios for each firm-year:

 \[ARTurnover_{i,t} = \frac{AR_{i,t}}{TotalSales_{i,t}'} \]

 \[APTurnover_{i,t} = \frac{AP_{i,t}}{COGS_{i,t}'} \]

 \[NetTradeCredit_{i,t} = \frac{AR_{i,t} - AP_{i,t}}{TotalSales_{i,t}'} \]

- Sort firms in each producer tercile by these (lagged) ratios and evaluate their stock returns.

- Comparative statics from the model predict that high trade credit firms will have larger stock return effects.
Data

- **Worldscope**: trade credit (annual), stock return (monthly), and balance-sheet (annual) information for firms.
 - Sample period 1993 to 2009.
 - 39 producer countries, 55 countries in total.
 - 32,598 unique firms.

- Only use industrial firms (exclude transportation, utility, banking, insurance and other financial firms).

- Annual bilateral trade (import and export) data from IMF Direction of Trade Statistics

- Annual GDP data from the IMF World Economic Outlook Database.
Correlations between MSCI and constructed indices

[Bar chart showing correlations between MSCI and constructed indices for various countries.]
Customers and Producers
Supplier-Importer strategies exist as well.

<table>
<thead>
<tr>
<th>Country</th>
<th>Export (Customer) Links</th>
<th>Import (Supplier) Links</th>
<th>Mean Stock Returns</th>
<th>Std Dev Stock Returns</th>
<th>Total Num Firms</th>
<th>Average Num Firms</th>
<th>Data Begin Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Producer</td>
<td>Trade Partner</td>
<td>Importer</td>
<td>Trade Partner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>0.596</td>
<td>4.858</td>
<td>10034</td>
</tr>
<tr>
<td>UK</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>0.637</td>
<td>4.405</td>
<td>2797</td>
</tr>
<tr>
<td>Emerging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>1.002</td>
<td>13.396</td>
<td>1360</td>
</tr>
<tr>
<td>Russia</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>2.262</td>
<td>14.453</td>
<td>103</td>
</tr>
<tr>
<td>Brazil</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>2.064</td>
<td>13.446</td>
<td>185</td>
</tr>
<tr>
<td>India</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>0.878</td>
<td>9.056</td>
<td>877</td>
</tr>
<tr>
<td>Country</td>
<td>Net Trade Credit</td>
<td></td>
<td>AR Turnover</td>
<td></td>
<td>AP Turnover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>Mean</td>
<td>Std Dev</td>
<td>Median</td>
<td>Mean</td>
<td>Std Dev</td>
<td>Median</td>
</tr>
<tr>
<td>Developed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>0.065</td>
<td>0.064</td>
<td>0.008</td>
<td>0.153</td>
<td>0.155</td>
<td>0.011</td>
<td>0.217</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.075</td>
<td>0.076</td>
<td>0.011</td>
<td>0.181</td>
<td>0.178</td>
<td>0.016</td>
<td>0.205</td>
</tr>
<tr>
<td>Emerging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>0.139</td>
<td>0.165</td>
<td>0.154</td>
<td>0.359</td>
<td>0.362</td>
<td>0.156</td>
<td>0.255</td>
</tr>
<tr>
<td>Russia</td>
<td>0.159</td>
<td>0.192</td>
<td>0.136</td>
<td>0.230</td>
<td>0.312</td>
<td>0.190</td>
<td>0.252</td>
</tr>
<tr>
<td>India</td>
<td>0.096</td>
<td>0.106</td>
<td>0.034</td>
<td>0.254</td>
<td>0.257</td>
<td>0.030</td>
<td>0.196</td>
</tr>
</tbody>
</table>
Excess returns computed from factor models of the form:

\[r_{p,t} - r_{f,t} = \alpha_p + \sum_{j=1}^{J} \beta_{p,j} F_{j,t} + \varepsilon_{p,t}. \]

- \(J = 1 \), with the excess return on the MSCI world index as the factor.
- \(J = 2 \), adds a momentum (MOM) factor to the MSCI world index, constructed from terciles of developed country returns, sorted by their past twelve month returns.
- \(J = 3 \), adds a value factor (HML), constructed by sorting countries into terciles based on their value-weighted firm-level book-to-market ratios.

Baseline Results

The baseline strategy doesn’t hold up over our sample period.

<table>
<thead>
<tr>
<th>Customer-Producer Sorts</th>
<th>Regression</th>
<th>Excess Return</th>
<th>One Factor (+MKT)</th>
<th>Two Factor (+MOM)</th>
<th>Three Factor (+HML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td></td>
<td>0.728 [0.501]</td>
<td>0.488 [0.283]</td>
<td>0.543 [0.282]</td>
<td>0.511 [0.275]</td>
</tr>
<tr>
<td>Bottom</td>
<td></td>
<td>0.281 [0.529]</td>
<td>0.037 [0.403]</td>
<td>0.167 [0.362]</td>
<td>0.110 [0.418]</td>
</tr>
<tr>
<td>Top - Bottom</td>
<td></td>
<td>0.447 [0.441]</td>
<td>0.451 [0.445]</td>
<td>0.376 [0.428]</td>
<td>0.401 [0.455]</td>
</tr>
</tbody>
</table>
But there is a clear separation between high and low TC firms.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Net Trade Credit</th>
<th>AR Turnover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Excess Return</td>
<td>One Factor (+MKT)</td>
</tr>
<tr>
<td>Regression</td>
<td>Excess Return</td>
<td>One Factor (+MKT)</td>
</tr>
<tr>
<td>Bottom Trade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low TC</td>
<td>0.513 [0.525]</td>
<td>0.271 [0.417]</td>
</tr>
<tr>
<td>High TC</td>
<td>-0.127 [0.569]</td>
<td>-0.368 [0.438]</td>
</tr>
<tr>
<td>Difference</td>
<td>0.640 [0.304]</td>
<td>0.640 [0.303]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Excess Return</th>
<th>One Factor (+MKT)</th>
<th>Two Factor (+MOM)</th>
<th>Three Factor (+HML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom Trade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low TC</td>
<td>0.582 [0.506]</td>
<td>0.348 [0.399]</td>
<td>0.502 [0.368]</td>
<td>0.482 [0.401]</td>
</tr>
<tr>
<td>High TC</td>
<td>-0.281 [0.636]</td>
<td>-0.538 [0.496]</td>
<td>-0.427 [0.447]</td>
<td>-0.518 [0.553]</td>
</tr>
<tr>
<td>Difference</td>
<td>0.863 [0.354]</td>
<td>0.885 [0.347]</td>
<td>0.929 [0.363]</td>
<td>1.000 [0.439]</td>
</tr>
</tbody>
</table>
Trade Credit Sorts - Top Tercile
Non-monotonic, and seems to affect the bottom tercile the most.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Net Trade Credit</th>
<th>AR Turnover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Excess Return</td>
<td>One Factor (+MKT)</td>
</tr>
<tr>
<td>Top Trade</td>
<td>0.910</td>
<td>0.688</td>
</tr>
<tr>
<td>Low TC</td>
<td>[0.503]</td>
<td>[0.329]</td>
</tr>
<tr>
<td>High TC</td>
<td>0.574</td>
<td>0.322</td>
</tr>
<tr>
<td></td>
<td>[0.537]</td>
<td>[0.309]</td>
</tr>
<tr>
<td>Difference</td>
<td>0.336</td>
<td>0.367</td>
</tr>
<tr>
<td></td>
<td>[0.296]</td>
<td>[0.299]</td>
</tr>
</tbody>
</table>
Long-Short Portfolios Across Terciles

High monthly returns for model-implied strategies.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Net Trade Credit</th>
<th>AR Turnover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Excess Return</td>
<td>One Factor (+MKT)</td>
</tr>
<tr>
<td>Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Top – Short Bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low TC -High TC</td>
<td>0.974 [0.472]</td>
<td>0.969 [0.477]</td>
</tr>
<tr>
<td>High TC -High TC</td>
<td>0.983 [0.507]</td>
<td>0.947 [0.501]</td>
</tr>
<tr>
<td>Low TC -Low TC</td>
<td>0.629 [0.409]</td>
<td>0.622 [0.417]</td>
</tr>
<tr>
<td>High TC -Low TC</td>
<td>0.638 [0.440]</td>
<td>0.601 [0.436]</td>
</tr>
</tbody>
</table>
Robustness Checks

1. Trade credit may be correlated with other firm attributes that generate return spreads across firms.
 - Firm size.
 - Level of short-term debt.

2. We independently double-sort firms within the customer induced terciles by our trade credit measures and by these two firm attributes.
 - Return spreads across the trade credit dimension persist.
Double Sorts

<table>
<thead>
<tr>
<th>Measure</th>
<th>AR Turnover</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Market Cap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom Trade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.233</td>
<td>0.081</td>
<td>0.151</td>
<td>[0.578]</td>
</tr>
<tr>
<td>High</td>
<td>-0.203</td>
<td>-0.649</td>
<td>0.446</td>
<td>[0.722]</td>
</tr>
<tr>
<td>Low-High</td>
<td>0.436</td>
<td>0.730</td>
<td></td>
<td>[0.258]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measure</th>
<th>AR Turnover</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Short-term Debt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom Trade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.629</td>
<td>0.220</td>
<td>0.409</td>
<td>[0.509]</td>
</tr>
<tr>
<td>High</td>
<td>0.055</td>
<td>-0.655</td>
<td>0.710</td>
<td>[0.685]</td>
</tr>
<tr>
<td>Low-High</td>
<td>0.574</td>
<td>0.874</td>
<td></td>
<td>[0.463]</td>
</tr>
</tbody>
</table>
Conclusions and Future Directions

1. Investigate the role of trade credit in international stock return comovement.

2. Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.

Model predicts that increases in trade credit deliver higher cross-serial correlation of stock returns.

3. Test predictions of the model using customer-producer links.

Find that high levels of trade credit are associated with higher cross-serial correlation.

4. Future directions:
 1. Explore why results using APs are not as strong.
 2. Use our framework to distinguish models of contagion from fundamentals-based comovement.
Conclusions and Future Directions

1. Investigate the role of trade credit in international stock return comovement.

2. Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.

Future directions:

1. Explore why results using APs are not as strong.
2. Use our framework to distinguish models of contagion from fundamentals-based comovement.
Conclusions and Future Directions

1. Investigate the role of trade credit in international stock return comovement.

2. Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.
 - Model predicts that increases in trade credit deliver higher cross-serial correlation of stock returns.

3. Test predictions of the model using customer-producer links.
 - Find that high levels of trade credit are associated with higher cross-serial correlation.

4. Future directions:
 - Explore why results using APs are not as strong.
 - Use our framework to distinguish models of contagion from fundamentals-based comovement.
Conclusions and Future Directions

1. Investigate the role of trade credit in international stock return comovement.

2. Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.
 - Model predicts that increases in trade credit deliver higher cross-serial correlation of stock returns.

3. Test predictions of the model using customer-producer links.

Future directions:
1. Explore why results using APs are not as strong.
2. Use our framework to distinguish models of contagion from fundamentals-based comovement.
Conclusions and Future Directions

1. Investigate the role of trade credit in international stock return comovement.

2. Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.
 - Model predicts that increases in trade credit deliver higher cross-serial correlation of stock returns.

3. Test predictions of the model using customer-producer links.
 - Find that high levels of trade credit are associated with higher cross-serial correlation.

Future directions:

1. Explore why results using APs are not as strong.
2. Use our framework to distinguish models of contagion from fundamentals-based comovement.
Conclusions and Future Directions

1. Investigate the role of trade credit in international stock return comovement.

2. Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.
 - Model predicts that increases in trade credit deliver higher cross-serial correlation of stock returns.

3. Test predictions of the model using customer-producer links.
 - Find that high levels of trade credit are associated with higher cross-serial correlation.

4. Future directions:
 - Explore why results using APs are not as strong.
 - Use our framework to distinguish models of contagion from fundamentals-based comovement.
Conclusions and Future Directions

1. Investigate the role of trade credit in international stock return comovement.

2. Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.
 - Model predicts that increases in trade credit deliver higher cross-serial correlation of stock returns.

3. Test predictions of the model using customer-producer links.
 - Find that high levels of trade credit are associated with higher cross-serial correlation.

4. Future directions:
 - Explore why results using APs are not as strong.
Conclusions and Future Directions

1. Investigate the role of trade credit in international stock return comovement.

2. Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.
 - Model predicts that increases in trade credit deliver higher cross-serial correlation of stock returns.

3. Test predictions of the model using customer-producer links.
 - Find that high levels of trade credit are associated with higher cross-serial correlation.

4. Future directions:
 - Explore why results using APs are not as strong.
 - Use our framework to distinguish models of contagion from fundamentals-based comovement.