UC SANTA CRUZ

Monetary Regime Switches in India: Policy or Structure?

Michael Hutchison, Rajeswari Sengupta and Nirvikar Singh

Department of Economics and

Santa Cruz Institute for International Economics
University of California, Santa Cruz

DEA-NIPFP Workshop New Delhi, Mar 9-10, 2010

Outline

- Introduction
 - Objectives
 - Literature
- Indian Policy and Structure
- Methodology and Data
 - Taylor-type Rules
 - Markov Switching Models
 - Data
- Empirical Results
 - Responses to inflation and output gap
 - Lags and inertia
- Conclusions

Introduction: Objectives

- Context: Central banks have shifted from discretion to rules
- We investigate whether Indian monetary policy conduct can be described by a rule
- Essentially a revealed preference exercise, in the absence of an explicit rule
- Have to allow for some flexibility
 - Changes in policy conduct
 - Changes in economic structure
- Regime-switching model

Introduction: Literature

- Taylor (1993), basic idea of a rule paying attention to inflation and output gap
- Woodford (1999), added inertia
- Taylor (2001), added exchange rate
- Woodford (2001), provided formal normative foundations
- Owyang and Ramey (2004), Assenmacher-Wesche (2005) and Frommel et al. (2004), regime-switching models for monetary policy rules for advanced economies
- Aizenman et al (2009), Mohanty and Klau (2005), Virmani (2004), monetary policy rules for emerging economies – no regime switching

- Changes in Indian economy (Shah, 2008)
 - □ Shift toward a more conventional business cycle, rather than agricultural shocks dominating economic fluctuations
 - Much greater openness, rather than an almost completely autarkic situation
 - Major reform of a tax system that was marked by highly distortionary direct and indirect taxes
 - Significant development of financial markets, rather than a situation of extreme financial repression
 - Movement away from a situation where fiscal deficits were automatically parked with public sector banks, or passively monetized by the RBI

- Late 1980s: beginnings of freeing up of interest rates
- Between 1991 and 1997
 - Lending rates of commercial banks deregulated
 - Issue of ad hoc treasury bills was phased out (thereby eliminating automatic monetization of the budget deficit)
 - Statutory Liquidity Ratio (SLR) and Cash Reserve Ratio (CRR) rates reduced
 - RBI reactivated the refinance rate or bank rate (now used as a signaling rate to reflect the monetary policy stance).
- In 1994, India switched over to a more marketdetermined exchange rate system and instituted current account convertibility.

- From 1999 onwards
 - RBI followed a multiple indicator approach to monetary policy
 - Relaxed various capital controls
 - Introduced a Liquidity Adjustment Facility
 - Engaged in sterilization to manage capital flows

- "Thus the overall objective has had to be approached in a flexible and time variant manner with a continuous rebalancing of priority between growth and price stability, depending on underlying macroeconomic and financial conditions."
 - □ Rakesh Mohan in a 2006 speech, as Deputy Governor of the Reserve Bank of India

Methodology: Taylor-type rules

Woodford (2001) version, with exchange rate

$$i_{t} = c + \alpha y_{t} + \beta \pi_{t} + \chi \Delta e_{t} + \delta i_{t-1} + \varepsilon_{t}$$

Regime switching version

$$i_t = c + \alpha_{st} y_t + \beta_{st} \pi_t + \chi \Delta e_t + \delta i_{t-1} + \varepsilon_t$$

s = 1,2: Hawk and Dove

Methodology: Markov Switching

- Two-state, first order Markov switching process
- Constant transition probabilities $p_{nm} = \Pr\{S_t = m | S_{t-1} = n\}$
- Transition probability matrix

$$\mathsf{P} = \begin{bmatrix} p_{11} & p_{21} \\ p_{12} & p_{22} \end{bmatrix}$$

Methodology: Markov Switching

 Joint distribution of it and St conditional on past information

$$f(i_t, S_t | \Psi_{t-1}) = f(i_t | S_t, \Psi_{t-1}) f(S_t | \Psi_{t-1})$$

Likelihood function

$$\ln L = \sum_{t=1}^{T} \ln \left\{ \sum_{m=1}^{2} f(i_t \mid S_t, \Psi_{t-1}) \Pr(S_t = m \mid \Psi_{t-1}) \right\}$$

Methodology: Markov Switching

- Weighting term $\Pr(S_t = m \mid \Psi_{t-1})$ is the probability of being in each regime and is also referred to as filtered probability
- Updating of filtered probabilities

$$\Pr(S_{t} = m \mid \Psi_{t-1}) = \sum_{n=1}^{2} \Pr(S_{t} = m \mid S_{t-1} = n) \Pr(S_{t-1} = n \mid \Psi_{t-1})$$

$$\Pr(S_{t} = m \mid \Psi_{t}) = \frac{f(i_{t} \mid S_{t} = m, \Psi_{t-1}) \Pr(S_{t} = m \mid \Psi_{t-1})}{\sum_{m=1}^{2} f(i_{t} \mid S_{t} = m, \Psi_{t-1}) \Pr(S_{t} = m \mid \Psi_{t-1})}$$

Methodology: Data

- Quarterly data
- Sample period: 1987q1 to 2008q4
- Interest rate: overnight call/money market rate
- Inflation: annual percentage change in the Wholesale Price Index (WPI)
- Output: Index of Industrial Production (IIP), deseasonalized
- Potential output: Hodrick-Prescott (HP) filter applied to IIP
- Exchange rate: first difference of nominal rupeedollar exchange rate

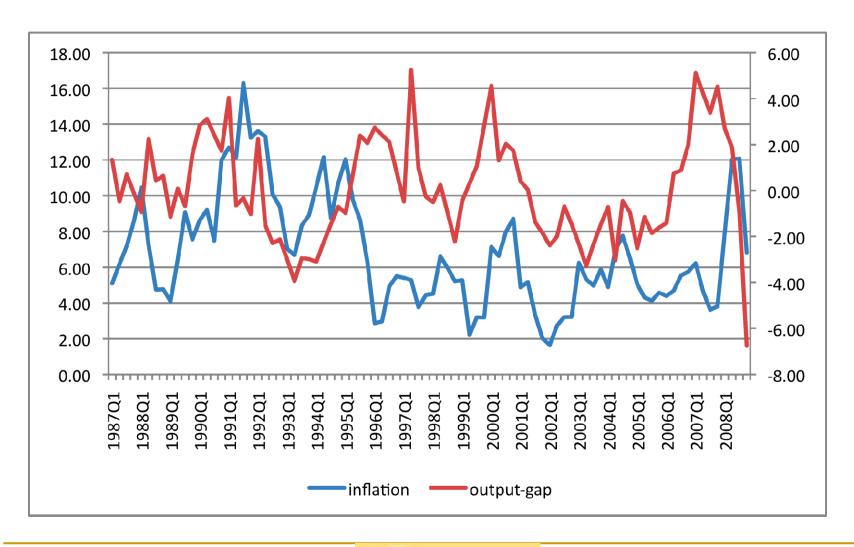
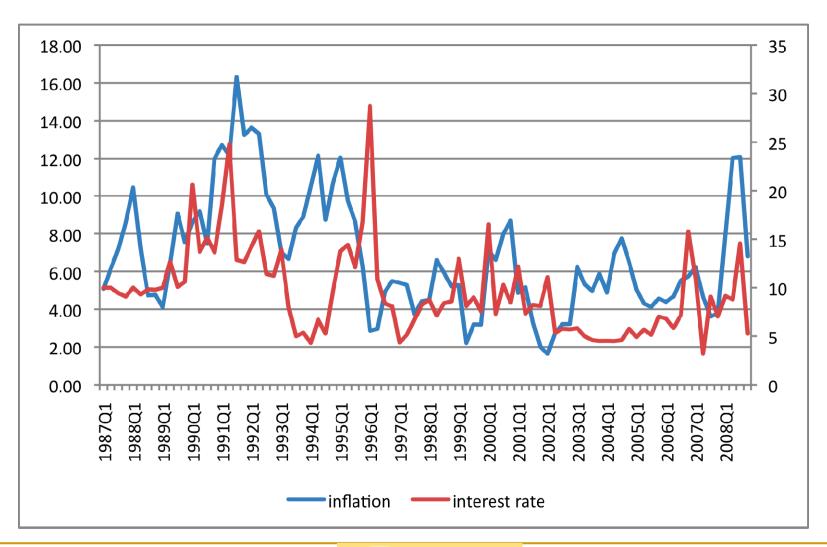

Empirical Results: Preliminaries

Table 1: Correlations


	1987q1- 2008q4	1987q1- 1995q4	1996q1- 2008q4
Output gap- Inflation	-0.0246	-0.0373	0.0625
Output gap- Interest rate	0.3541***	0.5140***	0.3525**
Inflation- Interest rate	0.3530***	0.2821*	0.0329

Note: *** (**) (*) denotes significance at the 1%, 5% and 10% level, respectively.

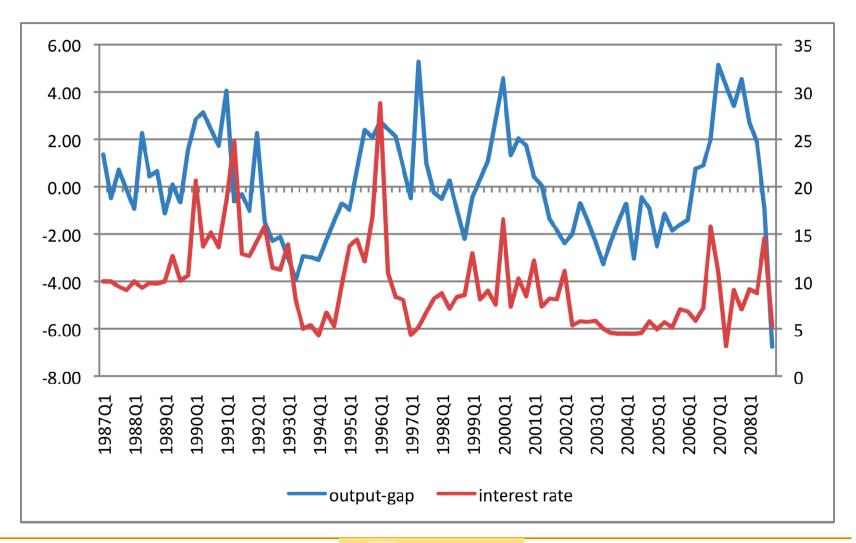

Figure 1: Output Gap and Inflation

Figure 2: Interest Rate and Inflation

Figure 3: Interest Rate and Output Gap

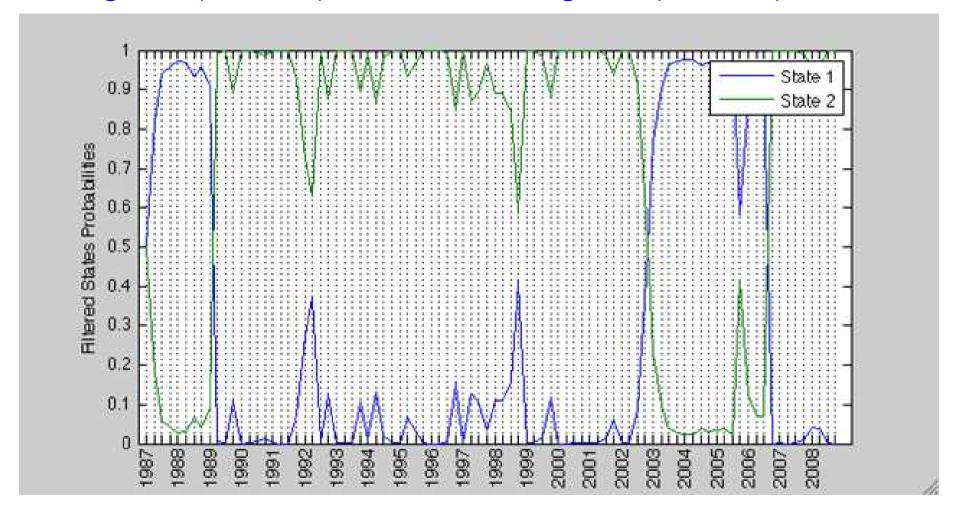
Empirical Results: Constant Coefficients

Parameters	Constant-Coefficients
α	0.5394***
	(0.1858)
eta	0. 3298***
,	(0.1047)
χ	3.1329
	(12.5261)
δ	0.3961***
	(0.0950)
Constant	3.4411***
	(0.8300)
Adj. R Squared	0.3647

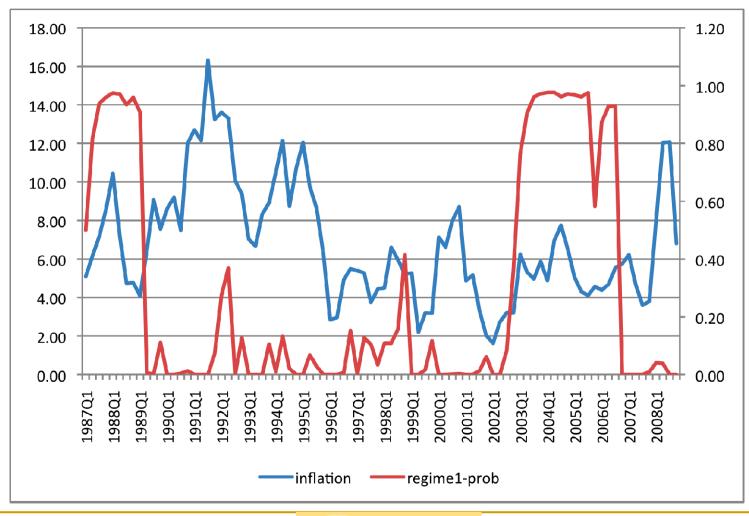
Note: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1

Interpretation

- Some inertia immediate response is about 60% of the total response
- Long run responses
 - □ Inflation 0.55
 - Coefficient is right sign, but not large enough to be consistent with a rule that stabilizes inflation
 - Output gap 0.89
- Exchange rate coefficient is not significant


Empirical Results: Regime Switching

Parameters	Switching-Coefficients	
$lpha_{_{ m l}}$	0.1147 (0.1141)	
$lpha_{_2}$	0.3883*** (0.0577)	
$oldsymbol{eta_{\!\scriptscriptstyle 1}}$	0.2346** (0.1021)	
$oldsymbol{eta_{\scriptscriptstyle 2}}$	0.2325 (0.1502)	
χ	-1.7004 (4.3896)	
δ	0.8144 *** (0.1023)	
$p_{_{11}}$	0.90	
p_{22}	0.98	
σ_1^2	0.1781*** (0.0485)	
$oldsymbol{\sigma}_{\scriptscriptstyle 2}^{\scriptscriptstyle 2}$	20.0594*** (1.6616)	
Constant	0.0000 (0.0005)	
Expected Duration Regime 1	10.43	
Expected Duration Regime 2	44.23	
Final Log Likelihood	-222.0993	


Interpretation

- Clearly two regimes 'Hawk' and 'Dove'
- High inertia immediate response is less than 20% of the total response
- Long run responses
 - □ Inflation in State 1 (Hawk) 1.26
 - Coefficient is right sign, and large enough to be consistent with a rule that stabilizes inflation
 - Output gap in State 2 (Dove) 2.09
- Probabilities of staying in either state are high, but higher for state 2 – greater expected duration also
- Exchange rate coefficient is not significant

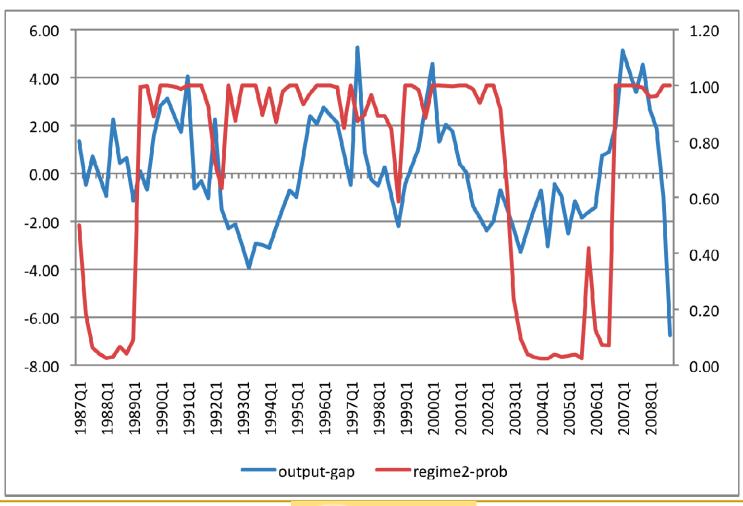

Figure 4: Estimated Regime Probabilities, Hawk Regime (state 1) and Dove Regime (state 2)

Figure 5: Probabilities of Hawk Regime (State 1) and Inflation Rate

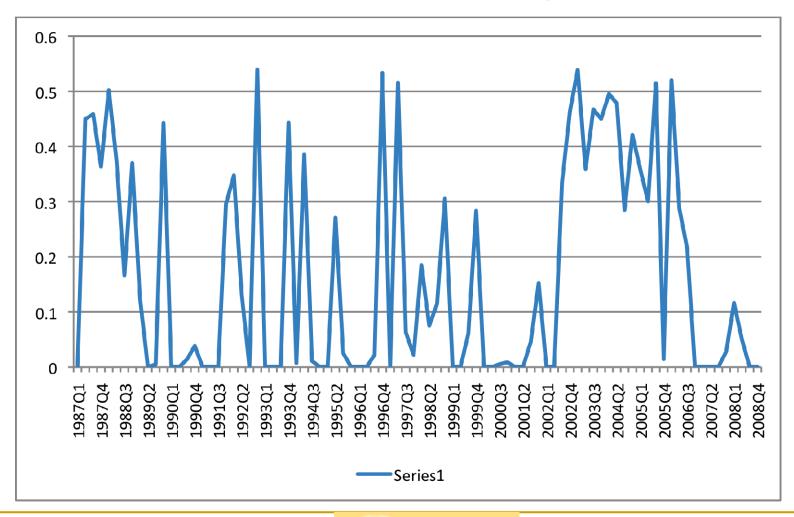
Figure 6: Probabilities of Dove Regime (State 2) and Output Gap

External Factors

- Allowing for regime switching with respect to the exchange rate leads to unstable estimates
- Using the change in foreign exchange reserves instead of the exchange rate also gives poor results
- External factors seem to be less important, or at least not a stable influence on policy

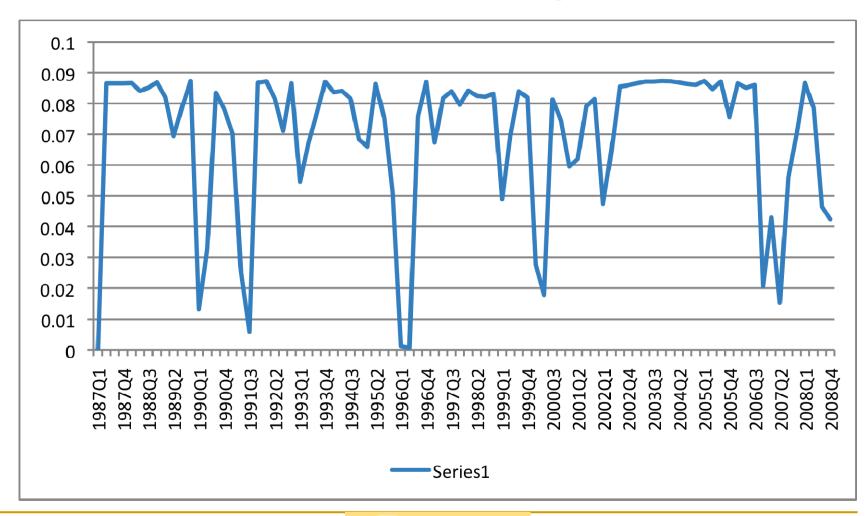
Conclusions (1)

- Primary question:
 - Can Indian monetary policy, usually described by RBI policymakers as highly discretionary, be described by simple policy rules as has been the case for many central banks?
- Estimate Taylor-type rules, but allowing for switches in the preferences of the central bank over time using a regime switching model

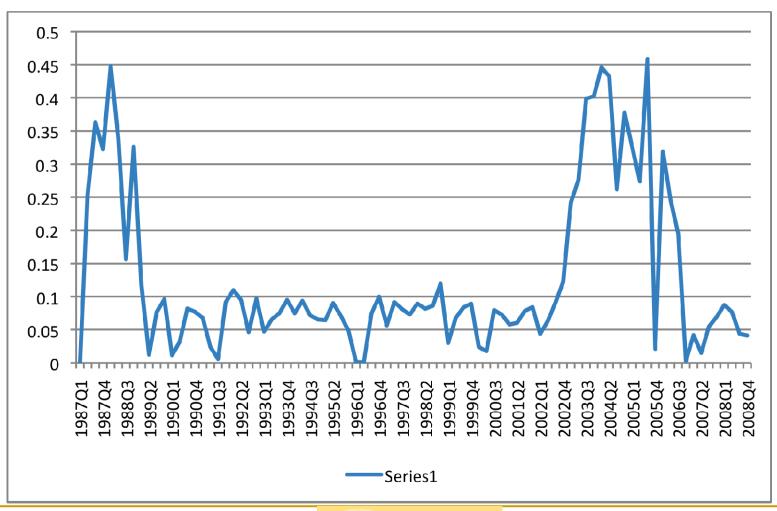

Conclusions (2)

- Results suggest that
 - RBI policy may be characterized by Hawk and Dove regimes over the 1987-2008 period
 - Dove regime appears to dominate
 - Focus is on output gap in Dove regime
 - No evidence that external considerations systematically influenced RBI policy
- Could also be that policy is just highly discretionary, that output is important, and that occasional shocks sometimes produce specific responses

Back-up Slides


March 9, 2010

Plot of the density function in State 1 times the filtered probability of being in State 1



Plot of the density function in State 2 times the filtered probability of being in State 2

Plot of the weighted average of the density function

