Asymmetries in central bank intervention

Matthieu Stigler Ila Patnaik Ajay Shah

September 16, 2009
Matthieu Stigler, Ila Patnaik, Ajay Shah
Asymmetries in central bank intervention
Outline

1. The question
2. Methodology
3. Data
4. Results
Understanding more-flexible but not floating rates

- Highly inflexible exchange rates: easy to understand, near-zero flexibility.
 Example: China

- Less inflexible exchange rates, or dirty floats
 Example: India
Frankel and Wei, ZSP, methodology:
classify exchange rates based on R^2 of currency basket estimation:

- Fixed pegs with $R^2 \approx 1$ – nothing complicated there
- Intermediate regimes with $R^2 \approx 0.6 \text{ to } -0.8$
- Floating rates with $R^2 \approx 0.3 \text{ to } -0.4$

What is going on in this middle zone?
Asymmetries in trading of central bank?

Three possible behaviours:
- Symmetric intervention
- Depreciation prevention
- Appreciation prevention
Asymmetries in trading of central bank?

Three possible behaviours:
- Symmetric intervention
- Depreciation prevention
 - Fears of a collapse of confidence
 - Firms have large borrowings in dollar
 - Exchange rate pass-through to inflation is high
- Appreciation prevention
Asymmetries in trading of central bank?

Three possible behaviours:

- Symmetric intervention
- Depreciation prevention
 - Fears of a collapse of confidence
 - Firms have large borrowings in dollar
 - Exchange rate pass-through to inflation is high
- Appreciation prevention
 - Export led growth
Asymmetries in trading of central bank?

Three possible behaviours:

- Symmetric intervention
- Depreciation prevention
 - Fears of a collapse of confidence
 - Firms have large borrowings in dollar
 - Exchange rate pass-through to inflation is high
- Appreciation prevention
 - Export led growth

Can we test for asymmetry in the behaviour of the central bank when trading on the currency market?
With wide span, when a country has had many changes in the exchange rate regime, results will be relatively unclear.

Apply ZSP methodology to identify structural breaks and sub-periods. Focusing on sub-periods will clarify the picture.

In periods where $R^2 > 0.95$ there is no asymmetry.
Methodology to test for asymmetric intervention

Methods track asymmetric behaviour:

- From exchange rate to central bank intervention.
- From central bank intervention to volatility of exchange rate.

Results:
- Asian countries respond more to appreciations.
- Yen: interventions more effective when massive depreciation.
- India: Appreciations lead to reserve change but not depreciations.

Some drawbacks:
- Changes in reserves as proxy for intervention.
- Simultaneity/endogeneity in estimation.
- Few countries release daily intervention data.
Methodology to test for asymmetric intervention

Methods track asymmetric behaviour:
- From exchange rate to central bank intervention.
- From central bank intervention to volatility of exchange rate

Results:
- Asian countries respond more to appreciations
- Yen: interventions more effective when massive depreciation
- India: Appreciations lead to reserve change but not depreciations
Methodology to test for asymmetric intervention

Methods track asymmetric behaviour:

- From exchange rate to central bank intervention.
- From central bank intervention to volatility of exchange rate

Results:

- Asian countries respond more to appreciations
- Yen: interventions more effective when massive depreciation
- India: Appreciations lead to reserve change but not depreciations

Some drawbacks:

- Changes in reserves as proxy for intervention
- Simultaneity/endogeneity in estimation
- Few country release daily intervention data
Changes in reserves as proxy for intervention
Models for asymmetries

- Univariate analysis on the exchange rate only
- Use regime switching models for asymmetries in appreciation/depreciation:

Definition (Regime switching Models)

Capture regime-specific dynamics by estimating different regimes.
Threshold autoregressive processes (TAR)

Threshold auto-regressive (TAR) process of the nominal exchange rate time-series y_t:

$$y_t = \begin{cases}
\mu_L + \zeta_{L1}y_{t-1} + \zeta_{L2}y_{t-2} + \cdots + \zeta_{Lp}y_{t-p} + \varepsilon_t & \text{if } y_{t-1} \leq \theta \\
\mu_H + \zeta_{H1}y_{t-1} + \zeta_{H2}y_{t-2} + \cdots + \zeta_{Hp}y_{t-p} + \varepsilon_t & \text{if } y_{t-1} > \theta
\end{cases}$$

Under this model:
- Regime A: when values are below θ (low values regime)
- Regime B: when values are above θ (high values regime)
TAR models are popular (Obstfeld, Taylor 1996, Taylor et al. 2001) to account for:

- Link real exchange rate to LOP/PPP
- Transactions costs
- Transportations costs
Advantages/disadvantages:

+ Indicates different behaviour with low/high exchange rate

− Clear interpretation only for fix peg
Momentum threshold-autoregressive

Same as TAR but: transition variable is in difference (M-TAR):

\[
y_t = \begin{cases}
\mu_L + \zeta_{L1}y_{t-1} + \zeta_{L2}y_{t-2} + \cdots + \zeta_{Lp}y_{t-p} + \varepsilon_t & \text{if } \Delta y_{t-1} \leq \theta \\
\mu_H + \zeta_{H1}y_{t-1} + \zeta_{H2}y_{t-2} + \cdots + \zeta_{Hp}y_{t-p} + \varepsilon_t & \text{if } \Delta y_{t-1} > \theta
\end{cases}
\]

Example (Interpretation)

Say \(\theta = 0 \):

- Regime A: \(\Delta y_{t-1} < 0 \) for days of appreciation
- Regime B: \(\Delta y_{t-1} > 0 \) for days of depreciation
TAR: Illustration

Transition variable is level

Transition variable is diff

regime
--- Δ low
--- Δ high

Matthieu Stigler, Ila Patnaik, Ajay Shah
Asymmetries in central bank intervention
We reparametrize the AR as in ADF test, from:

\[y_t = \mu L + \zeta_{L1}y_{t-1} + \zeta_{L2}y_{t-2} + \ldots + \zeta_{Lp}y_t + \epsilon_t \]

is equivalent to:

\[\Delta y_t = \mu L + \rho L y_{t-1} + \sum_{i}^{p-1} \phi_i \Delta y_{t-1} + \epsilon_t \]

We interpret \(\rho = \zeta_1 + \zeta_1 + \ldots + \zeta_p \) as mean reversion parameter:

\[\rho = 0 \quad \text{Random walk (no mean reversion)} \]
\[-2 < \rho < 0 \quad \text{Stationary process (mean reversion \(\uparrow \) when \(\rho \rightarrow -1 \))} \]
Testing procedure

Testing: \(\rho_{Ap} \leq \rho_{Dep} \)

\[\begin{align*}
\rho_{Ap} &< \rho_{Dep} \quad \text{Appreciations are more mean-reverting} \\
\rho_{Ap} &> \rho_{Dep} \quad \text{Depreciations are more mean-reverting.}
\end{align*} \]

Interesting case:

Definition (partial unit root)

\(\rho_A < 0 \) and \(\rho_B = 0 \)

- Regime A is stationary: there is mean reversion
- Regime B has unit root: no mean reversion,

We interpret partial roots as case of asymmetric intervention.
Type of regime

Recall:

\[y_t = \begin{cases}
\mu_L + \zeta_{L1}y_{t-1} + \zeta_{L2}y_{t-2} + \ldots + \zeta_{Lp}y_{t-p} + \varepsilon_t & \text{if } \Delta y_{t-1} \leq \theta \\
\mu_H + \zeta_{H1}y_{t-1} + \zeta_{H2}y_{t-2} + \ldots + \zeta_{Hp}y_{t-p} + \varepsilon_t & \text{if } \Delta y_{t-1} > \theta
\end{cases} \]

We do not impose a threshold value of 0 but estimate it.

This can then split:

- Appreciation vs depreciation
- Normal vs extreme regime (say \(\theta = -0.5 \): large appreciations vs normal appreciations and all depreciations)
Summary of methodology

- Run analysis on sub-periods defined on ZSP methodology
Summary of methodology

- Run analysis on sub-periods defined on ZSP methodology
- Estimate the potential threshold
 - Appreciation vs depreciations? ($\theta = 0$)
 - Normal versus extreme regime?
Summary of methodology

- Run analysis on sub-periods defined on ZSP methodology
- Estimate the potential threshold
 - Appreciation vs depreciations? ($\theta = 0$)
 - Normal versus extreme regime?
- Test for threshold effect: asymmetry?
Summary of methodology

- Run analysis on sub-periods defined on ZSP methodology
- Estimate the potential threshold
 - Appreciation vs depreciations? ($\theta = 0$)
 - Normal versus extreme regime?
- Test for threshold effect: asymmetry?
- If asymmetry, compare long-run dynamics: mean reverting or not?
Summary of methodology

- Run analysis on sub-periods defined on ZSP methodology
- Estimate the potential threshold
 - Appreciation vs depreciations? \(\theta = 0 \)
 - Normal versus extreme regime?
- Test for threshold effect: asymmetry?
- If asymmetry, compare long-run dynamics: mean reverting or not?
- Interpret:
 - Appreciation prevention?
 - Large appreciations prevention?
 - ...

Matthieu Stigler, Ila Patnaik, Ajay Shah
Asymmetries in central bank intervention
Outline

1. The question
2. Methodology
3. Data
4. Results
Exchange rate

INR/USD

1995 2000 2005 2010

Asymmetries in central bank intervention

Matthieu Stigler, Ila Patnaik, Ajay Shah

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Peg to</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993-04-09</td>
<td>1995-03-03</td>
<td>USD</td>
<td>0.98</td>
</tr>
<tr>
<td>1995-03-10</td>
<td>1998-08-21</td>
<td>USD</td>
<td>0.72</td>
</tr>
<tr>
<td>1998-08-28</td>
<td>2004-03-19</td>
<td>USD</td>
<td>0.97</td>
</tr>
<tr>
<td>2004-03-26</td>
<td>2009-08-21</td>
<td>USD, JPY, GBP, EUR</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Outline

1. The question
2. Methodology
3. Data
4. Results
Results

Full sample

- Threshold effects
- Some evidence of appreciation prevention. **But very sensitive**
Sub-period 1

1993-04-09 to 1998-08-21:

- $R^2 = 0.98$, USD
- Only 17 different values with 400 observations
- Unreliable threshold estimate
Sub-period 2

1993-04-09 to 1998-08-21:

- $R^2 = 0.72$, USD
- Threshold effect: yes, 0.24 (5% > 0.24)
- Partial unit root:
 - Large depreciations: mean reverting
 - Small depreciations and all appreciations: no mean reversion
- \Rightarrow Prevention of large depreciations
Sub-period 3

From 1998-08-28 to 2004-03-19:

- $R^2 = 0.97$, USD
- Threshold effect: yes, 0.1 (6% > 0.1)
- Unit root: both regimes fluctuated randomly
Sub-period 4

From 2004-03-26 to 2009-05-29:

- $R^2 = 0.75$, USD +EU+GBP
- Threshold effect: yes
 - -0.25 (8% < -0.25)
- Partial unit root:
 - Large appreciations: mean reverting
 - Small appreciations and rall depreciations: no mean reversion
- \Rightarrow Prevention of large appreciations
Summary of the results

- Asymmetries (threshold effects) found in all sub-periods
- Different long-run coefficients in sub-periods with intermediate R^2 only

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Threshold</th>
<th>Unit roots</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993-04-09</td>
<td>1995-03-03</td>
<td>no</td>
<td>Both stationary</td>
<td>0.98</td>
</tr>
<tr>
<td>1995-03-10</td>
<td>1998-08-21</td>
<td>0.24</td>
<td>Depreciation prevention</td>
<td>0.72</td>
</tr>
<tr>
<td>1998-08-28</td>
<td>2004-03-19</td>
<td>0.1</td>
<td>No mean reversion</td>
<td>0.97</td>
</tr>
<tr>
<td>2004-03-26</td>
<td>2009-08-21</td>
<td>−0.25</td>
<td>Appreciation prevention</td>
<td>0.69</td>
</tr>
</tbody>
</table>
In intermediate exchange rate regimes, different behaviours are possible:
- No asymmetry
- Appreciation prevention
- Depreciation prevention

Propose methodology to investigate behaviour of central bank

Applied to India, find evidence of appreciation and depreciation prevention on different sub-periods

Methodology works for intermediate regimes, not informative for fixed regimes
Future steps

- M-TAR with three regimes: large appreciations, large depreciations, inaction band.
- Use benchmark model where appreciation prevention is known a priori
- Application to more countries,