Monetary policy analysis in an inflation targeting framework in emerging economies: The case of India

Rudrani Bhattacharya
Ila Patnaik

National Institute Public Finance and Policy

March 14, 2014
Outline

- Motivation
- Literature
- Contribution
- Model, data and calibration
- Results
- Policy implications
- Summary
Part I

Motivation
Inflation persistently above target zone

WPI, YoY (%)
Inflation persistently above target zone

CPI, YoY (%)
Motivation

Transition from fixed to flexible exchange rate regime

Volatility in rupee-dollar exchange rate increased significantly after 2008
Transition from fixed to flexible exchange rate regime

RBI’s intervention in foreign exchange market declined significantly after 2008

![Graph showing RBI trading percent to M0 from 2002 to 2014 with significant interventions in 2003 and 2007.](image-url)
Despite monetary tightening, inflation pressures have persisted.
Rising inflationary expectations

In absence of an alternative nominal anchor, inflationary expectations started rising and have persisted above 10% since 2010.
Questions

- What are the factors that have contributed to post-crisis business cycle fluctuations and inflation dynamics in India?
- Is aggregate demand a contributor to inflation pressure in India? Does monetary policy have a role to play?
- What would have been the post-crisis monetary policy stance in a counter-factual scenario of inflation-targeting (IT) central bank in India?
- Would monetary policy be successful in anchoring inflationary pressure in recent times under a hypothetical scenario of IT central bank?
Part II

Literature review
Micro-founded DSGE models with New-Keynesian features (Smets and Wouters, 2003; Gali, 2007; Gali and Gartler, 2009; Gali and Monacelli, 2008), which help in identifying:

- Factors contributing to **business cycle fluctuations**
- **Welfare-based optimal** monetary and fiscal policy rules under alternative policy regimes

Recently developed FPAS models (Berg and Laxton, 2006; Laxton, Rose and Scott, 2009) apply **reduced form semi-structural New-Keynesian** model coherently with data and help in:

- Providing a practical guide to **IT central banks to assess macroeconomic functioning** of the country in a single framework
- **Predicting future monetary policy path** to contain inflation rate in the country at a desired level in medium to long term
Variants of FPAS models have been applied in countries with an existent, as well as those transitioning to, an IT framework.

Application by existing IT central banks: ECB, Australia, New Zealand

Limited application to EMs: Kenya (Andrle, Berg, Morales, Portillo, and Vlcek, 2013), Sri Lanka (Anand, Ding, and Peiris, 2011)

Implemented by Czech National Bank (Andrle, Hledik, Kamnik, Vlcek, 2009)

Limited literature on India: Estimated new Keynesian closed economy model for India (Patra, Kapur, 2010)
Part III

Contribution
First semi-structural New-Keynesian open economy model for India, capturing main macroeconomic mechanisms, useful for:

Identification Of factors contributing to Indian business cycle fluctuations and inflation dynamics

Prediction Of inflation, and corresponding policy rate, in the medium to long run

Promoting Discussion on rules-based policy making in India
Contribution

Comparison of FPAS with other models

- **DSGE:**
 - FPAS allows abstraction away from micro-foundations and deep-parameters, estimation of which is unreliable for EMs

- **Structural time series models (SVAR, SVECM):**
 - They take policy parameters as given, and are unable to incorporate forward looking features. However, each equation in FPAS carries an economic interpretation.
 - Ad-hoc ordering of variables in SVAR leads to identification problems. The FPAS framework is free of such mis-specification errors.
 - Additionally, our model allows analysis of policy intervention under alternative policy parameters.
Part IV

Model, data and calibration
Model

Domestic block

- Aggregate demand (IS curve)
- Aggregate supply (Philips curve)
Model

Domestic block

- **Aggregate demand (IS curve)**

\[\hat{y}_t = \alpha_1 y_{t-1} - [\alpha_2 \hat{r}_{t-1} - \alpha_3 z_{t-1}] + \alpha_4 E_t \hat{y}_{t+1} + \alpha_5 y^*_t + \epsilon_t \]

Components:

- Lagged aggregate demand
- Real monetary conditions
 - Real interest rate gap
 - Real exchange rate gap
- Expected output gap
- Foreign output gap
- Exogenous shock

- **Aggregate supply (Philips curve)**
Model
Domestic block

- Aggregate demand (IS curve)
- Aggregate supply (Philips curve)

\[\pi_t = (1 - \theta_1)\pi_{t-1} + \theta_1 E_t \pi_{t+1} + \theta_2 rmc_t + \epsilon_t \pi \]

Components:
- Lagged inflation
- Expected inflation \((E_t \pi_{t+1})\)
- Real marginal costs
 - Real exchange rate gap
 - Output gap
- Exogenous shock
Model

Domestic & foreign block

- Monetary policy (Taylor rule)
- Exchange rate (UIP condition)
- Foreign block
Model

Domestic & foreign block

- **Monetary policy (Taylor rule)**

\[i_t = \rho_2 i_{t-1} + (1 - \rho_2)(i^n_t + \rho_3(E_t\pi_{t+4} - \pi^T_{t+4}) + \rho_4 \hat{y}_t) + \epsilon_t \]

Components:
- Deviation of expected inflation from target/objective
- Deviation of output from potential
- Exogenous shock

- **Exchange rate (UIP condition)**

- **Foreign block**
Model

Domestic & foreign block

- **Monetary policy (Taylor rule)**
- **Exchange rate (UIP condition)**

\[
\begin{align*}
 s_t &= 0.7E_t s_{t+1} + 0.31 s_{t-1}^e + (-i_t + i_t^* + prem_t)/4 + \epsilon^s_t \\
 s_t^e &= s_{t-1} + 0.5(\Delta \bar{Z} + \pi^T - \pi^*_{ss}) \\
 \Delta \bar{s}_t &= \pi^T - \pi^*_{ss} + \Delta \bar{Z}_t
\end{align*}
\]

Components:
- Domestic interest rate
- Foreign interest rate
- Premium
- Purchasing power parity condition
- Exogenous shock

- **Foreign block**
Model

Domestic & foreign block

- Monetary policy (Taylor rule)
- Exchange rate (UIP condition)

Foreign block

- Modelled exogenously as an AR process, with constant drift representing the steady state of foreign variables
Calibration and Steady-state values

Calculated based on historical data, literature surveys and judgement about the Indian economy.

<table>
<thead>
<tr>
<th>Description</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation target</td>
<td>π_{ss}</td>
<td>5%</td>
</tr>
<tr>
<td>Real interest rate trend</td>
<td>\bar{r}_{ss}</td>
<td>2%</td>
</tr>
<tr>
<td>Real exchange rate trend</td>
<td>\bar{z}_{ss}</td>
<td>2</td>
</tr>
<tr>
<td>Output trend</td>
<td>y_{ss}</td>
<td>6.5%</td>
</tr>
<tr>
<td>Foreign real interest rate</td>
<td>\bar{r}^{*}_{ss}</td>
<td>0.5%</td>
</tr>
<tr>
<td>Foreign inflation target</td>
<td>π^{*}_{ss}</td>
<td>2%</td>
</tr>
</tbody>
</table>
Data description

<table>
<thead>
<tr>
<th>Series</th>
<th>Variable</th>
<th>Data used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>y</td>
<td>GDP, factor cost (Base: 2004-05)</td>
</tr>
<tr>
<td>Prices</td>
<td>p</td>
<td>Wholesale Price Index</td>
</tr>
<tr>
<td>Nominal exchange rate</td>
<td>s</td>
<td>INR/USD</td>
</tr>
<tr>
<td>Nominal interest rate</td>
<td>i</td>
<td>91-day Treasury Bill rate</td>
</tr>
<tr>
<td>Foreign demand</td>
<td>y^*</td>
<td>US GDP, market prices (Base: 2009)</td>
</tr>
<tr>
<td>Foreign prices</td>
<td>p^*</td>
<td>US Consumer Price Index</td>
</tr>
<tr>
<td>Foreign nominal interest rate</td>
<td>i^*</td>
<td>US 13-week Treasury Bill rate</td>
</tr>
</tbody>
</table>

Range: 1996 Q1 - 2013 Q4

Source: Datastream
Part V

Results
Model performance
Fitted and actual WPI inflation, YoY (%)
Monetary policy transmission in India: AD channel
IRFs from MP shock
Monetary policy transmission in India: AD channel
IRFs from MP shock (Patra & Kapur 2010)
Patterns in post-crisis Indian business cycle

Output gap, per cent deviation from trend
Patterns in post-crisis Indian business cycle

Real interest rate gap, per cent deviation from trend
Patterns in post-crisis Indian business cycle
Real exchange rate gap, per cent deviation from trend
Factors affecting post-crisis business cycle

Output gap

![Decomposition of Output Gap](image-url)

- Persistence
- Real interest rate gap
- Real exchange rate gap
- Expected output gap
- Foreign output gap
- Demand shock

[Year:Quarter]

[Deviation from Equilibrium]
Factors affecting post-crisis inflation dynamics
Factors affecting post-crisis monetary policy

Monetary policy

Decomposition of MP rate

- Lagged
- Policy Neutral
- Inflation Dev.
- Output Gap
- Shock

[in percent]

[Year:Quarter]

Factors affecting post-crisis monetary policy

Monetary policy

![Graph showing actual and Taylor-implied monetary policy trends from 2000 to 2012](image-url)
Part VI

Policy implications
Post-crisis monetary policy stance

- Imagine an inflation targeting RBI in a post-crisis world
- They respond to deviations of inflation from target, and output gap from trend
- Could they have contained inflation and anchored expectations?
Policy implications

Post-crisis monetary policy stance: Inflation
Comparison of actual and counterfactual inflation

Rudrani Bhattacharya Ila Patnaik (NIPFP)
Monetary policy analysis in an inflation targeting framework in emerging economies: The case of India
March 14, 2014 35 / 1
Policy implications

Post-crisis monetary policy stance: Expected inflation
In-sample forecasting, 2010 Q1 - 2013 Q4

![Chart showing expected inflation, inflation, and target over time from 2005 to 2013.](image)

In-sample forecast period

Part VII

Conclusion
Summary

- Semi-structural New-Keynesian open economy model for India
- Demand plays a significant role in driving post-crisis inflationary pressure in India
- Monetary policy transmission via aggregate demand channel
- The model predicts tighter monetary policy during 2009 to beginning of 2011 implied by the Taylor rule
- Provides evidence for usefulness of inflation targeting in India
Thank you.