How Do Regulators Influence Mortgage Risk? Evidence from an Emerging Market

John Y. Campbell
Harvard

Tarun Ramadorai
Oxford

March 2012
The Importance of Mortgages

- Housing is the largest household asset, and mortgages the largest liability.
The Importance of Mortgages

- Housing is the largest household asset, and mortgages the largest liability.
- Mortgage markets vary considerably across countries.
The Importance of Mortgages

- Housing is the largest household asset, and mortgages the largest liability.

- Mortgage markets vary considerably across countries.
 - What are the causes of this variation?
The Importance of Mortgages

- Housing is the largest household asset, and mortgages the largest liability.

- Mortgage markets vary considerably across countries.
 - What are the causes of this variation?
 - What are the consequences?
The Importance of Mortgages

- Housing is the largest household asset, and mortgages the largest liability.

- Mortgage markets vary considerably across countries.
 - What are the causes of this variation?
 - What are the consequences?
 - Part of a broader research agenda on international comparative household finance.
How Does Regulation Influence Mortgage Markets?

- An important, topical question given the recent housing crisis in the developed world.
How Does Regulation Influence Mortgage Markets?

- An important, topical question given the recent housing crisis in the developed world.

 - Evidence from the U.S. indicates significant impacts of regulatory norms on mortgage screening (see, for example, Keys et al., 2011 QJE).
How Does Regulation Influence Mortgage Markets?

- An important, topical question given the recent housing crisis in the developed world.
 - Evidence from the U.S. indicates significant impacts of regulatory norms on mortgage screening (see, for example, Keys et al., 2011 *QJE*).

- Emerging markets are a good place to look for regulatory influences on mortgage lending:
How Does Regulation Influence Mortgage Markets?

- An important, topical question given the recent housing crisis in the developed world.
 - Evidence from the U.S. indicates significant impacts of regulatory norms on mortgage screening (see, for example, Keys et al., 2011 *QJE*).

- Emerging markets are a good place to look for regulatory influences on mortgage lending:
 - Rapidly changing market structures.
How Does Regulation Influence Mortgage Markets?

- An important, topical question given the recent housing crisis in the developed world.
 - Evidence from the U.S. indicates significant impacts of regulatory norms on mortgage screening (see, for example, Keys et al., 2011 QJE).

- Emerging markets are a good place to look for regulatory influences on mortgage lending:
 - Rapidly changing market structures.
 - Intense regulation.
How Does Regulation Influence Mortgage Markets?

- An important, topical question given the recent housing crisis in the developed world.
 - Evidence from the U.S. indicates significant impacts of regulatory norms on mortgage screening (see, for example, Keys et al., 2011 QJE).

- Emerging markets are a good place to look for regulatory influences on mortgage lending:
 - Rapidly changing market structures.
 - Intense regulation.
 - Regulation is highly unstable over time.
How Does Regulation Influence Mortgage Markets?

- An important, topical question given the recent housing crisis in the developed world.
 - Evidence from the U.S. indicates significant impacts of regulatory norms on mortgage screening (see, for example, Keys et al., 2011 *QJE*).

- Emerging markets are a good place to look for regulatory influences on mortgage lending:
 - Rapidly changing market structures.
 - Intense regulation.
 - Regulation is highly unstable over time.

- We have excellent data from an Indian mortgage provider.
How Does Regulation Influence Mortgage Markets?

- An important, topical question given the recent housing crisis in the developed world.

 - Evidence from the U.S. indicates significant impacts of regulatory norms on mortgage screening (see, for example, Keys et al., 2011 *QJE*).

- Emerging markets are a good place to look for regulatory influences on mortgage lending:

 - Rapidly changing market structures.
 - Intense regulation.
 - Regulation is highly unstable over time.

- We have excellent data from an Indian mortgage provider.

 - An opportunity to learn from the time-series of innovations.
Our Study

- We analyze over 1.2 million mortgages disbursed between 1995 and 2010 by an Indian mortgage provider.
Our Study

- We analyze over 1.2 million mortgages disbursed between 1995 and 2010 by an Indian mortgage provider.

1. We detect a significant spike in defaults (delinquencies) in the early 2000s.
Our Study

- We analyze over 1.2 million mortgages disbursed between 1995 and 2010 by an Indian mortgage provider.

1. We detect a significant spike in defaults (delinquencies) in the early 2000s.

 1.1 Controlling for other macro- and micro- determinants, we find evidence that regulatory changes encouraged mortgage lending at that time. “Smoking gun.”
Our Study

- We analyze over 1.2 million mortgages disbursed between 1995 and 2010 by an Indian mortgage provider.

1. We detect a significant spike in defaults (delinquencies) in the early 2000s.

 1.1 Controlling for other macro- and micro- determinants, we find evidence that regulatory changes encouraged mortgage lending at that time. “Smoking gun.”

2. We also find that regulation – priority sector lending norms – distorted the relationship between loan defaults and rate-setting.
Our Study

- We analyze over 1.2 million mortgages disbursed between 1995 and 2010 by an Indian mortgage provider.

1. We detect a significant spike in defaults (delinquencies) in the early 2000s.

 1.1 Controlling for other macro- and micro- determinants, we find evidence that regulatory changes encouraged mortgage lending at that time. “Smoking gun.”

2. We also find that regulation – priority sector lending norms – distorted the relationship between loan defaults and rate-setting.

3. We find evidence consistent with learning over time by the mortgage provider in the face of a rapidly changing regulatory environment.
The Time Series of Rates and Defaults

- Beginning with a majority of fixed-rate mortgage initiations (~65%) in 1995, virtually all issuance by 2010 is variable-rate.

- Variable and fixed interest rates generally track benchmark rates.
 - Significant declines in benchmark rates beginning in 1999.

- Important deviations from general trends:
The Time Series of Rates and Defaults

- Beginning with a majority of fixed-rate mortgage initiations (~65%) in 1995, virtually all issuance by 2010 is variable-rate.

- Variable and fixed interest rates generally track benchmark rates.
 - Significant declines in benchmark rates beginning in 1999.

- Important deviations from general trends:
 - Increase in both fixed and variable rate defaults during 2001-2003, especially pronounced in fixed-rate mortgages.

Levelling off of defaults by 2005.
Pronounced spike in fixed-rate issuance by the mortgage provider in 2004, accompanied by a reduction in average fixed rate relative to variable rate.
The Time Series of Rates and Defaults

- Beginning with a majority of fixed-rate mortgage initiations (~65%) in 1995, virtually all issuance by 2010 is variable-rate.

- Variable and fixed interest rates generally track benchmark rates.
 - Significant declines in benchmark rates beginning in 1999.

- Important deviations from general trends:
 - Increase in both fixed and variable rate defaults during 2001-2003, especially pronounced in fixed-rate mortgages.
 - Levelling off of defaults by 2005.
The Time Series of Rates and Defaults

- Beginning with a majority of fixed-rate mortgage initiations (~65%) in 1995, virtually all issuance by 2010 is variable-rate.

- Variable and fixed interest rates generally track benchmark rates.
 - Significant declines in benchmark rates beginning in 1999.

- Important deviations from general trends:
 - Increase in both fixed and variable rate defaults during 2001-2003, especially pronounced in fixed-rate mortgages.
 - Levelling off of defaults by 2005.
 - Pronounced spike in fixed-rate issuance by the mortgage provider in 2004, accompanied by a reduction in average fixed rate relative to variable rate.
Default Rate, 90 days past due
Seasonally adjusted using monthly dummies
A Hazard Model for Defaults

- We estimate a hazard model to better understand the determinants of defaults.
 - Decompose time-series variation in default rates into cohort-time variation and demographic/loan characteristic variation.

- Default Indicator on Loan

$$\delta_{i,c,b,t} = FE(Branch, Cohort \times Time) + j(Dem., LoanChars) + \gamma r_{i,c,b} + e_{i,c,b}$$

- To control for house-price movements, we include (in LoanChars) branch-level house-price appreciation up to time t from the beginning of the sample period.
Decomposing Default-Rate Variation

Variable-Rate Loans

Decomposing 90 Day Delinquency Rates
Variable Rate Mortgages

Due to Demographics/Loan Characteristics
Due to Cohort X Time Dummies
Default Rate
GDPGrowth
Regulation and Mortgage Lending

- Default spike in 2002, 2003, not explained by loan or borrower characteristics, house prices, or GDP growth.

- We look to the changing regulatory regime for clues.
Regulation and Mortgage Lending

- Default spike in 2002, 2003, not explained by loan or borrower characteristics, house prices, or GDP growth.

- We look to the changing regulatory regime for clues.
 - Before 2002, mortgage lending regulated using interest-rate ceilings on deposit-taking HFCs, and leverage restrictions on banks and HFCs.
Regulation and Mortgage Lending

- Default spike in 2002, 2003, not explained by loan or borrower characteristics, house prices, or GDP growth.

- We look to the changing regulatory regime for clues.
 - Before 2002, mortgage lending regulated using interest-rate ceilings on deposit-taking HFCs, and leverage restrictions on banks and HFCs.
 - The National Housing and Habitat Policy of 1998 introduced significant changes:
Regulation and Mortgage Lending

- Default spike in 2002, 2003, not explained by loan or borrower characteristics, house prices, or GDP growth.

- We look to the changing regulatory regime for clues.
 - Before 2002, mortgage lending regulated using interest-rate ceilings on deposit-taking HFCs, and leverage restrictions on banks and HFCs.

- The National Housing and Habitat Policy of 1998 introduced significant changes:
 - In 2002, RBI and NHB begin altering risk-weights for housing on bank and HFC balance sheets.
Regulation and Mortgage Lending

- Default spike in 2002, 2003, not explained by loan or borrower characteristics, house prices, or GDP growth.

- We look to the changing regulatory regime for clues.
 - Before 2002, mortgage lending regulated using interest-rate ceilings on deposit-taking HFCs, and leverage restrictions on banks and HFCs.

- The National Housing and Habitat Policy of 1998 introduced significant changes:
 - In 2002, RBI and NHB begin altering risk-weights for housing on bank and HFC balance sheets.
 - This impacts risk capital available to banks and HFCs.
Regulation and Mortgage Lending

- Default spike in 2002, 2003, not explained by loan or borrower characteristics, house prices, or GDP growth.

- We look to the changing regulatory regime for clues.
 - Before 2002, mortgage lending regulated using interest-rate ceilings on deposit-taking HFCs, and leverage restrictions on banks and HFCs.

- The National Housing and Habitat Policy of 1998 introduced significant changes:
 - In 2002, RBI and NHB begin altering risk-weights for housing on bank and HFC balance sheets.
 - This impacts risk capital available to banks and HFCs.

- Change in classification of NPAs in 2004 and 2005 – 90-day delinquencies.
Cohort-Time Fixed Effects, Which Loans?

Variable-Rate Loans

Risk Weights and Cohort-Time Dummies

Variable Rate Loans

No interest-rate ceiling in this period

Older (t-4+) Cohorts

Two Year Old (t-2) Cohort

Three Year Old (t-3) Cohort

Current (t) and (t-1) Cohorts

Average Risk Weight (Bank & HFC, LTC < 75%)

3*Interest Rate Ceiling (HFC)
More Regulatory Norms: Priority Sector Lending

- Low-cost housing is one component of "priority sector lending" (PSL) norms mandated by the RBI.
 - Quantity targets and price subsidies for “qualified” lending.

- Quantity:
 - 40% of net bank credit for domestic banks (32% for foreign banks)
 - 3% of net new deposits of public sector banks into housing.
 - HFCs indirectly subject to PSL quantity norms.

- Price subsidies: Interest-rate “subventions.”

- Compulsory low-interest lending to rural agriculture if you violate targets...!
Detecting the Effects of PSL Norms

- Plot loan size dummies from lifetime default regressions versus those from initial interest-rate rate regressions.
Detecting the Effects of PSL Norms

- Plot loan size dummies from lifetime default regressions versus those from initial interest-rate regressions.
 - Size of bubble corresponds to fraction of the loan flow over the period that occurs in the size bucket.

Idea:
- In an efficient mortgage market, size-bucket fixed effects should lie on a positively-sloped straight line passing through origin.
- Distorting effect of subsidies should move bubbles north-west (low initial interest rate, high lifetime default rate).
Detecting the Effects of PSL Norms

- Plot loan size dummies from lifetime default regressions versus those from initial interest-rate regressions.
 - Size of bubble corresponds to fraction of the loan flow over the period that occurs in the size bucket.
 - PSL qualifying loans are shaded (grey - qualify for part of the period, black - full period).
Detecting the Effects of PSL Norms

- Plot loan size dummies from lifetime default regressions versus those from initial interest-rate regressions.
 - Size of bubble corresponds to fraction of the loan flow over the period that occurs in the size bucket.
 - PSL qualifying loans are shaded (grey - qualify for part of the period, black - full period).
 - Origin set at first non-subsidized size bucket.
Detecting the Effects of PSL Norms

- Plot loan size dummies from lifetime default regressions versus those from initial interest-rate regressions.
 - Size of bubble corresponds to fraction of the loan flow over the period that occurs in the size bucket.
 - PSL qualifying loans are shaded (grey - qualify for part of the period, black - full period).
 - Origin set at first non-subsidized size bucket.

- Idea:
Detecting the Effects of PSL Norms

- Plot loan size dummies from lifetime default regressions versus those from initial interest-rate regressions.
 - Size of bubble corresponds to fraction of the loan flow over the period that occurs in the size bucket.
 - PSL qualifying loans are shaded (grey - qualify for part of the period, black - full period).
 - Origin set at first non-subsidized size bucket.

- Idea:
 - In an efficient mortgage market, size-bucket fixed effects should lie on a positively-sloped straight line passing through origin.
Detecting the Effects of PSL Norms

- Plot loan size dummies from lifetime default regressions versus those from initial interest-rate regressions.
 - Size of bubble corresponds to fraction of the loan flow over the period that occurs in the size bucket.
 - PSL qualifying loans are shaded (grey - qualify for part of the period, black - full period).
 - Origin set at first non-subsidized size bucket.

- Idea:
 - In an efficient mortgage market, size-bucket fixed effects should lie on a positively-sloped straight line passing through origin.
 - Distorting effect of subsidies should move bubbles north-west (low initial interest rate, high lifetime default rate).
Fixed-Rate Loans, 1995-1999

1995-1999
Fixed Rate Mortgages

Initial Interest Rate Above Initial Interest Rate on Smallest Non-Subsidized Loans

Default Propensity Relative to Smallest Non-Subsidized Loans
Fixed-Rate Loans, 2000-2004

2000-2004
Fixed Rate Mortgages

Default Propensity Relative to Smallest Non-Subsidized Loans

Initial Interest Rate Above Initial Interest Rate on Smallest Non-Subsidized Loans
Fixed-Rate Loans, 2005-2010

2005-2010
Fixed Rate Mortgages

Initial Interest Rate Above Initial Interest Rate on Smallest Non-Subsidized Loans
Variable-Rate Loans, 1995-1999

1995-1999
Variable Rate Mortgages

Default Propensity Relative to Smallest Non-Subsidized Loans

Initial Interest Rate Above Initial Interest Rate on Smallest Non-Subsidized Loans
Variable-Rate Loans, 2000-2004

2000-2004
Variable Rate Mortgages

Default Propensity Relative to Smallest Non-Subsidized Loans

Initial Interest Rate Above Initial Interest Rate on Smallest Non-Subsidized Loans
Variable-Rate Loans, 2005-2010

2005-2010
Variable Rate Mortgages

Default Propensity Relative to Smallest Non-Subsidized Loans

Initial Interest Rate Above Initial Interest Rate on Smallest Non-Subsidized Loans
Learning by the Mortgage Provider

- We measure:

1. Cross-sectional correlation in each cohort of initial interest rates and lifetime default indicator.
 - 1.1 To what extent are rates set in line with rational forecasts of default?

2. Rolling cross-sectional correlation between fitted initial interest rates and fitted lifetime default indicator.
 - 2.1 Is mortgage provider using measurable loan and borrower characteristics “correctly”?

- Idea: correlations rise if the mortgage provider is learning, since interest rates increasingly set to account for subsequent defaults.
Cross-Sectional Variation in Initial Rates
Variable Rate Mortgages

- Standard Deviation of Actual Initial Interest Rates
- Standard Deviation of Fitted Initial Interest Rates
- Standard Deviation of Fitted Initial Interest Rates, Pooled Model
Correlations, Variable Rate Mortgages

- Corr(Actual Initial Rates, Actual 90d Defaults)
- Corr(Fitted Initial Rates, Fitted 90d Defaults)
- Corr(Fitted Initial Rates, Fitted 90d Defaults), Pooled Model
The Early 2000s

- Significant increase in correlations of initial interest rates and lifetime default rates over the early 2000s.

- Substantial increase in the cross-sectional standard deviation of initial (mostly variable) rates.
 - Mostly from higher coefficients on demographic variables (no great change in variation of demographics).

- Which demographics/loan attributes are they learning about?
 - Variable rate loans: Loan size (some evidence for loan-to-cost and loan-to-income ratios).
 - Fixed rate loans: Loan term (size also important).
Conclusions

- The Indian regulatory and macroeconomic environment has been changing rapidly over the past two decades.
Conclusions

- The Indian regulatory and macroeconomic environment has been changing rapidly over the past two decades.

- A fast-developing housing market has had important changes to cope with.
Conclusions

- The Indian regulatory and macroeconomic environment has been changing rapidly over the past two decades.

- A fast-developing housing market has had important changes to cope with.
 - Significant variation in default rates and interest rates.

- Highly important effects of regulatory changes and national housing policy.

- Priority-sector lending norms.

- Reserve Bank changes in risk-weights for housing finance.

- Unintended negative consequences of well-meaning regulatory changes.

- Mortgage provider seemingly learning fast in a difficult environment.
Conclusions

- The Indian regulatory and macroeconomic environment has been changing rapidly over the past two decades.

- A fast-developing housing market has had important changes to cope with.

 - Significant variation in default rates and interest rates.

 - Highly important effects of regulatory changes and national housing policy.
Conclusions

- The Indian regulatory and macroeconomic environment has been changing rapidly over the past two decades.

- A fast-developing housing market has had important changes to cope with.
 - Significant variation in default rates and interest rates.
 - Highly important effects of regulatory changes and national housing policy.
 - Priority-sector lending norms.
Conclusions

- The Indian regulatory and macroeconomic environment has been changing rapidly over the past two decades.
- A fast-developing housing market has had important changes to cope with.
 - Significant variation in default rates and interest rates.
 - Highly important effects of regulatory changes and national housing policy.
 - Priority-sector lending norms.
 - Reserve Bank changes in risk-weights for housing finance.
Conclusions

- The Indian regulatory and macroeconomic environment has been changing rapidly over the past two decades.

- A fast-developing housing market has had important changes to cope with.
 - Significant variation in default rates and interest rates.
 - Highly important effects of regulatory changes and national housing policy.
 - Priority-sector lending norms.
 - Reserve Bank changes in risk-weights for housing finance.

- Unintended negative consequences of well-meaning regulatory changes.
Conclusions

- The Indian regulatory and macroeconomic environment has been changing rapidly over the past two decades.

- A fast-developing housing market has had important changes to cope with.
 - Significant variation in default rates and interest rates.
 - Highly important effects of regulatory changes and national housing policy.
 - Priority-sector lending norms.
 - Reserve Bank changes in risk-weights for housing finance.

- Unintended negative consequences of well-meaning regulatory changes.

- Mortgage provider seemingly learning fast in a difficult environment.
Initial Fixed and Variable Rates for Mortgages
Average across all Loans issued in each Cohort

Initial Fixed Interest Rates
- 6.00%
- 8.00%
- 10.00%
- 12.00%
- 14.00%
- 16.00%
- 18.00%

Initial Variable Interest Rates
- 0.00%
- 2.00%
- 4.00%
- 6.00%

1 Year Indian Government Bond Yield

10 Year Indian Government Bond Yield
Decomposing Default-Rate Variation

Fixed-Rate Loans

Decomposing 90 Day Delinquency Rates
Fixed Rate Mortgages

Due to Demographics/Loan Characteristics
Due to Cohort X Time Dummies
Default Rate
GDP Growth
Cohort-Time Fixed Effects, Which Loans?

Fixed-Rate Loans

Risk Weights and Cohort-Time Dummies
Fixed Rate Loans

No interest-rate ceiling in this period

Older (t-4+) Cohorts
Three Year Old (t-3) Cohort
Two Year Old (t-2) Cohort
Current (t) and (t-1) Cohorts
Average Risk Weight (Bank & HFC, LTC < 75%)
3*Interest Rate Ceiling (HFC)
Cross-Sectional Variation in Initial Rates

Fixed Rate Mortgages

Standard Deviation of Actual Initial Interest Rates
Standard Deviation of Fitted Initial Interest Rates
Standard Deviation of Fitted Initial Interest Rates, Pooled Model
Correlations, Fixed Rate Mortgages

Corr(Actual Initial Rates, Actual 90d Defaults)
Corr(Fitted Initial Rates, Fitted 90d Defaults)
Corr(Fitted Initial Rates, Fitted 90d Defaults), Pooled Model