International Transmission of Monetary Shocks

Xuehui Han
Asian Development Bank
Based on joint research with Shang-Jin Wei

MSCI Share Price Index, Jan2012=100

Background

 The tapering talk in May 2013 triggered jitters in the financial markets of emerging economies such as India and Indonesia

Do Developing Countries Have to Import US Monetary Policies?

Supposed "corollary" of the trilemma:

 Flexible exchange rate regimes produce monetary policy autonomy

Capital controls are ineffective

Alternative views

- Calvo and Reinhart, QJE, 2002
 - "Fear of floating"
- H. Tong and S.J. Wei, RFS, 2011
 - The nominal exchange rate regime does not make a difference to the transmission of global financial crisis to developing countries
- H. Rey, Jackson Hole presentation, 2013
 - Capital flows are highly correlated regardless of nominal exchange rate regime.

Competing recommendations:

- For emerging markets: prioritize exchange rate flexibility (e.g., IMF's Article IV reports on the People's Republic of China, 2014) since capital controls are leaky (Edwards, 2012) and costly (e.g., Wei and Zhang, 2007)
- Only capital controls confer real monetary autonomy (Tong and Wei (2011), Chinn and Wei (2013), and Rey (2013)

Empirical investigation

 Does a flexible exchange rate regime really confer monetary policy autonomy?

 Capital control or flexible exchange rate regime, which one is more effective?

The methodology for the investigation

Monetary policy of country k

Part I linked to domestic need

Based on domestic growth and inflation

Part II

reflecting passive response to US monetary policy

+

Part III reflecting global risk appetite

Could be affected by a country's nominal exchange rate regime and capital controls regime

The Baseline Model

$$(1) \Delta i_{i,t}^p = \lambda i_{i,t-1}^p + \gamma_1 \Delta r_{i,t}^{P*} + \gamma_2 \Delta r_t^{US} + \delta VIX_t + \varepsilon_{i,t}.$$

- $\gamma_1 \Delta r_{i,t}^{P*}$: a desired change based on purely domestic factors;
- $\gamma_2 \Delta r_t^{US}$: an "involuntary" change, responding to a US rate change;
- VIX_t : an indicator of the state of the financial cycle (Chicago Board Options Exchange Equity Option Volatility Index)

(2)
$$\Delta r_{i,t}^{P*} = \tilde{\mathbf{c}} + \widetilde{\phi_1} * \Delta GDP \ growth_{i,t} + \widetilde{\phi_2} * \Delta Inflation_{i,t} + \widetilde{e_{i,t}}$$

(3)
$$\gamma_2 = \beta_1 D_{fixed.NC} + \beta_2 D_{fixed.C} + \beta_3 D_{flex.C} + \beta_4 D_{flex.NC}$$

The model used for estimations

$$\begin{split} \Delta i_{i,t}^p &= c + \lambda i_{i,t-1}^p + \phi_1 * \Delta \text{GDP growth}_{i,t} + \phi_2 * \Delta Inflation_{i,t} \\ &+ \beta_1 D_{fixed .NC} \Delta r_{i,t}^{US} + \beta_2 D_{fixed .C} \Delta r_{i,t}^{US} + \beta_3 D_{flex .C} \Delta r_{i,t}^{US} \\ &+ \beta_4 D_{flex .NC} \Delta r_{i,t}^{US} + \delta VIX_t + e_{i,t} \end{split}$$

The Lower-bound Episodes

$$(1)\Delta i_{i,t}^p = \lambda i_{i,t-1}^p + \gamma_1 \Delta r_{i,t}^{P*} + \gamma_2 \Delta r_t^{US\#} + \delta \Delta VIX_t + \varepsilon_{i,t},$$

$$(2) \Delta r_t^{US\#} = \begin{cases} \Delta r_t^{US}, & r_t^{US*} > Lower \ Bound \\ \Delta r_t^{US*}, & r_t^{US*} = Lower \ Bound \end{cases},$$

(3)
$$r_t^{US*} = \theta_1 + \theta_2 log M_t + \theta_3 log Y_t + \epsilon_t$$
.

(4)

$$L = \prod_{i=1}^{N} \left(\Phi\left(\frac{\Delta i_{i,t}^{p} - \left(\lambda i_{i,t-1}^{p} + \gamma_{1} \Delta r_{i,t}^{P*} + \gamma_{2} \Delta r_{t}^{US} + \delta \Delta V I X_{t}\right)}{\sigma_{\varepsilon}} \right) \left(1 - \Phi\left(\frac{0 - \left(\theta_{1} + \theta_{2} \log M_{t} + \theta_{3} \log Y_{t}\right)}{\sigma_{\varepsilon}}\right) \right) \right)^{Y_{i}}$$

$$\left(\Phi\left(\frac{\Delta i_{i,t}^{p} - \left(\lambda i_{i,t-1}^{p} + \gamma_{1} \Delta r_{i,t}^{P*} + \gamma_{2} (\theta_{2} \Delta \log M_{t} + \theta_{3} \Delta \log Y_{t}) + \delta \Delta V I X_{t}\right)}{\gamma_{2} \sigma_{\varepsilon_{t} - \varepsilon_{t-1}} + \sigma_{\varepsilon}} \right) \Phi\left(\frac{0 - \left(\theta_{1} + \theta_{2} \log M_{t} + \theta_{3} \log Y_{t}\right)}{\sigma_{\varepsilon}}\right) \right)^{1 - Y_{i}},$$

where $Y_i = 1$, if $r_t^{US*} > Lower Bound$; $Y_i = 0$, otherwise.

Data

- Forecasts of GDP growth and Inflation are from WEO (semiannually) starting from 1990;
- Policy interest rate: monetary policy rate and discount rate (when monetary policy rate is not available);
- Capital Control Index: 1—Chinn-Ito financial openness index;
- Nominal Exchange Rate regime: ReInhart and Rogoff (2012) exchange rate regime classifications;
- Include Germany to represent euro zone countries.

Hypothesis and Analysis

Table 1 Combinations of exchange rate regimes and capital control scenarios and the coefficients on foreign policy influence

	No Capital Controls	Capital Controls
Fixed Exchange Rate Regime	$oldsymbol{eta_1}$	β_2
Flexible Exchange Rate Regime	$oldsymbol{eta_4}$	β_3

Main findings

- With a fixed exchange rate and no capital controls: An increase in the US interest rate by 100 basis points is followed by an increase in the interest rate by 65 basis points on average;
- Flex rate and no capital controls: an increase in interest rate by 45 bps. (still no monetary policy autonomy)
- With capital controls: domestic interest rate is uncorrelated with the US rate -> autonomy

Table 3 Coefficient estimates for baseline model for different periods

	,	Short-term	Short-term	Short-term	Long-term
		1990-2009	1990-1998	1999-2009	1999-2009
		(1)	(2)	(3)	(4)
$i_{i,t-1}^p$	λ	-0.048*	-0.007	-0.110*	-0.068*
$\Delta GDP \ growth_{i,t}$	$oldsymbol{\phi}_1$	0.096	0.237	0.041	$\boldsymbol{0.064*}$
$\Delta Inflation_{i,t}$	ϕ_2	0.329*	0.134	0.413*	0.162*
$D_{fixed\ .NC}\Delta r_{i,t}^{US}$	$oldsymbol{eta}_1$	0. 649*	0.402	0.654*	0.680*
$D_{fixed\ .C}\Delta r_{i,t}^{US}$	$oldsymbol{eta}_2$	0.034	1.998	-0.249	0.34
$D_{flex.NC}\Delta r_{i,t}^{US}$	$oldsymbol{eta}_3$	0.450*	0.492	0.497*	0.407*
$D_{flex.C}\Delta r_{i,t}^{US}$	eta_4	0.029	0.008	0.063	0.12
ΔVIX_t	δ	0.23	0.086	0.176	0.14
F test: $\beta_2 = \beta_4$		1.33	1.26	6.48*	0.00
F test: $\beta_4 = \beta_3$		4.07*	0.82	5.79*	2.62
Adj. R-squared		0.09	0.000	0.30	0.20
No. of Obs.		827	295	532	301

^{*} Significant at 10%.

Robustness Check

Table 4. Coefficient estimates using different exchange rate regimes and capital controls indexes

		Re-definir	ng capital	Re-defining the		Using pre-assigned	
		cont	rols	exchange rate regime		Taylor Rule	
		Short-term Long-term		Short-term	Long-term	Short-term	Long-term
		(1)	(2)	(3)	(4)	(5)	(6)
$i_{i,t-1}^p$	λ	-0.109*	-0.067*	-0.11*	-0.068*	-0.111*	-0.068*
$\Delta GDP \ growth_{i,t}$	ϕ_1	0.038	$\boldsymbol{0.065*}$	0.041	$\boldsymbol{0.064*}$	0.128**1	$\boldsymbol{0.057**}^{2}$
$\Delta Inflation_{i,t}$	ϕ_2	0.416*	0.160*	0.413*	0.162*	0.384**1	$\boldsymbol{0.170^{**2}}$
$D_{fixed~.NC} \Delta r_{i,t}^{US} \ D_{fixed~.C} \Delta r_{i,t}^{US}$	β_1	0.558*	0.667*	0.654*	0.680*	0.571*	0.680*
$D_{fixed\ .C}\Delta r_{i,t}^{US}$	β_2	-0.659*	0.10	-0.249	0.340	-0.311	0.360
$D_{flex.NC}\Delta r_{i,t}^{\mathit{US}} \ D_{flex.C}\Delta r_{i,t}^{\mathit{US}}$	β_3	0.322*	0.402*	0.497*	0.407*	0.441*	0.411*
$D_{flex.C}\Delta r_{i,t}^{US}$	eta_4	0.005	-0.09	0.063	0.12	0.005	0.13
ΔVIX_t	δ	0.17	0.14	0.176	0.14	0.148	0.14
Adj. R-squared		0.29	0.20	0.30	0.20	0.30	0.20
No. of Obs.		532	301	532	301	532	301

Imposed-parameter Taylor rule: $\Delta r_{i,t}^{P*} = 0.5 * \Delta GDP \ growth_{i,t} + 1.5 * \Delta Inflation_{i,t}$

Table 5 Coefficient estimates for four groups of countries using SUR

		Fixed exchange rate without capital controls	Fixed exchange rate with capital controls	Flexible exchange rate without capital controls	Flexible exchange rate with capital controls		
Panel A: Short-ter	rm Pol	icy Rate					
$\overline{i_{i,t-1}^p}$	λ	0.011	-0.056*	-0.118*	-0.118*		
ΔGDP growth _{i.t}	ϕ_1	0.075*	0.075*	0.075*	0.075*		
$\Delta Inflation_{i,t}$	ϕ_2	0.26*	0.26*	0.26*	0.26*		
$\Delta r_{i,t}^{US}$	β	0.669*	-0.204*	0.434*	0.047		
ΔVIX_t	δ	-0.55*	0.238	0.059	0.504*		
Panel B: Long-term Government Bond Yield							
$\overline{i_{i,t-1}^p}$	λ	-0.144*	0.01	-0.02	-0.093*		
ΔGDP growth _{i,t}	ϕ_1	0.066*	0.066*	0.066*	0.066*		
$\Delta Inflation_{i,t}$	ϕ_2	-0.047*	-0.047*	-0.047*	-0.047*		
$\Delta r_{i,t}^{US}$	β	0.830*	0.406*	0.414*	0.15		
ΔVIX_t	δ	-0.14	0.387*	0.05	0.607*		

Table 6. Extended analysis with the lower-bound episodes (1999–2012)

Using OLS est. Initial values Iv(1) – Initial val	1160
	ucs
as the initial in $(1) + SE*1$ SE *1 (OLS estimates)	ıate)
values (2) (3) (4)	
(1)	
$i_{i,t-1}^p$ λ -0.11* -0.11* -0.11*	:
$\Delta GDP \ growth_{i,t}$ ϕ_1 0.04 0.04 0.03	
$\Delta Inflation_{i,t}$ ϕ_2 0.39* 0.39* 0.39*	
$D_{fixed .NC} \Delta r_{i,t}^{US}$ β_1 0.65* 0.66* 0.66*	
$D_{fixed.C} \Delta r_{i,t}^{US}$ β_2 -0.23 -0.23 -0.23	
$D_{flex.NC} \Delta r_{i,t}^{US}$ β_3 0.5* 0.5* 0.5* 0.5* 0.06 0.06	
$D_{flex.C} \Delta r_{i,t}^{US}$	
ΔVIX_t δ 0.25* 0.25* 0.25*	
σ_{ϵ} 1.78* 1.78* 1.78	
$log M_t$ θ_2 -11.75 -4.48 -11.74 -24.89)
$logY_t$ θ_3 11.05 4.21 11.04 33.16	
$\sigma_{\epsilon_{t}}$ 0.39 0.15 0.39 1.08	
<i>Log L at optimal</i> -1305.351 -1305.278 -1305.35 -	

Conclusions

- For the pre-QE episode, a flexible exchange rate does not reliably deliver monetary policy independence, but capital controls do
- In open economies, a flexible exchange rate regime can help in keeping short-term policy rates less affected by US monetary policy changes, compared to those on a fixed exchange regime
- However, for the QE episode, the responses of peripheral countries' policy rates to the moneysupply-approximated monetary policy of the US are much lower