Asset Fire Sales and Purchases and the International Transmission of Funding Shocks

Pab Jotikasthira, Chris Lundblad and Tarun Ramadorai

SBS, Oxford-Man, CEPR

September 2009

Ramadorai (SBS, Oxford-Man, CEPR)

NIPFP-DEA Research Meeting

9/2009 1/21

• *Contagion* is the transmission of shocks between countries beyond any fundamental link among the countries and beyond common shocks.

- *Contagion* is the transmission of shocks between countries beyond any fundamental link among the countries and beyond common shocks.
 - A policy-relevant topic. If we can distinguish when transmission is contagious (not 'real'), can respond appropriately.

- *Contagion* is the transmission of shocks between countries beyond any fundamental link among the countries and beyond common shocks.
 - A policy-relevant topic. If we can distinguish when transmission is contagious (not 'real'), can respond appropriately.
- Recent episodes associated with contagion:

- *Contagion* is the transmission of shocks between countries beyond any fundamental link among the countries and beyond common shocks.
 - A policy-relevant topic. If we can distinguish when transmission is contagious (not 'real'), can respond appropriately.
- Recent episodes associated with contagion:
 - Russian Default, 1998.

- *Contagion* is the transmission of shocks between countries beyond any fundamental link among the countries and beyond common shocks.
 - A policy-relevant topic. If we can distinguish when transmission is contagious (not 'real'), can respond appropriately.
- Recent episodes associated with contagion:
 - Russian Default, 1998.
 - Asian Crisis, 1997.

• Several economists have emphasized that *financial frictions* are important.

- Several economists have emphasized that *financial frictions* are important.
 - Calvo (2005): informed, leveraged, investment managers ('Wall Street') are the conduit for shock transmission.

- Several economists have emphasized that *financial frictions* are important.
 - Calvo (2005): informed, leveraged, investment managers ('Wall Street') are the conduit for shock transmission.
 - Pavlova and Rigobon (2009): investors' portfolio constraints are important for cross-border shock propagation.

- Several economists have emphasized that *financial frictions* are important.
 - Calvo (2005): informed, leveraged, investment managers ('Wall Street') are the conduit for shock transmission.
 - Pavlova and Rigobon (2009): investors' portfolio constraints are important for cross-border shock propagation.
 - Kyle and Xiong (2001), Kodres and Pritsker (2002), Yuan (2005).

- Several economists have emphasized that *financial frictions* are important.
 - Calvo (2005): informed, leveraged, investment managers ('Wall Street') are the conduit for shock transmission.
 - Pavlova and Rigobon (2009): investors' portfolio constraints are important for cross-border shock propagation.
 - Kyle and Xiong (2001), Kodres and Pritsker (2002), Yuan (2005).
- The growing empirical evidence on this channel is supportive (but not conclusive).

- Several economists have emphasized that *financial frictions* are important.
 - Calvo (2005): informed, leveraged, investment managers ('Wall Street') are the conduit for shock transmission.
 - Pavlova and Rigobon (2009): investors' portfolio constraints are important for cross-border shock propagation.
 - Kyle and Xiong (2001), Kodres and Pritsker (2002), Yuan (2005).
- The growing empirical evidence on this channel is supportive (but not conclusive).
 - Kaminsky and Reinhart (2000), Kaminsky, Lyons and Schmukler (2004), Boyer, Kumagai and Yuan (2006), Hau and Rey (2008a, 2008b).

• Asset pricing theorists and empiricists have recently been thinking about a similar problem.

- Asset pricing theorists and empiricists have recently been thinking about a similar problem.
- Theory: How is asset market liquidity (and hence prices) affected by funding available to intermediaries?

- Asset pricing theorists and empiricists have recently been thinking about a similar problem.
- Theory: How is asset market liquidity (and hence prices) affected by funding available to intermediaries?
 - Brunnermeier and Pedersen (2009), Adrian and Shin (2009), Acharya, Shin and Yorulmazer (2009).

- Asset pricing theorists and empiricists have recently been thinking about a similar problem.
- Theory: How is asset market liquidity (and hence prices) affected by funding available to intermediaries?
 - Brunnermeier and Pedersen (2009), Adrian and Shin (2009), Acharya, Shin and Yorulmazer (2009).
- Empirics: Coval and Stafford (2007) investigate price determination for U.S. stocks.

- Asset pricing theorists and empiricists have recently been thinking about a similar problem.
- Theory: How is asset market liquidity (and hence prices) affected by funding available to intermediaries?
 - Brunnermeier and Pedersen (2009), Adrian and Shin (2009), Acharya, Shin and Yorulmazer (2009).
- Empirics: Coval and Stafford (2007) investigate price determination for U.S. stocks.
 - Mutual (and hedge) funds are often forced to redeem investments in response to funding shocks from their investor base.

- Asset pricing theorists and empiricists have recently been thinking about a similar problem.
- Theory: How is asset market liquidity (and hence prices) affected by funding available to intermediaries?
 - Brunnermeier and Pedersen (2009), Adrian and Shin (2009), Acharya, Shin and Yorulmazer (2009).
- Empirics: Coval and Stafford (2007) investigate price determination for U.S. stocks.
 - Mutual (and hedge) funds are often forced to redeem investments in response to funding shocks from their investor base.
 - Correlated forced redemptions (or 'fire sales') across institutions holding a particular stock lead to significant (but temporary) price falls.

イロト イ理ト イヨト イヨト

• To use new asset pricing methods to shed light on the mechanics of contagion.

- To use new asset pricing methods to shed light on the mechanics of contagion.
- Question: Are funding shocks that hit global asset management funds transmitted to emerging markets?

- To use new asset pricing methods to shed light on the mechanics of contagion.
- Question: Are funding shocks that hit global asset management funds transmitted to emerging markets?
 - Do global funds that experience outflows (inflows) liquidate (increase) country holdings significantly? (*Fire sales (and purchases)*)

- To use new asset pricing methods to shed light on the mechanics of contagion.
- Question: Are funding shocks that hit global asset management funds transmitted to emerging markets?
 - Do global funds that experience outflows (inflows) liquidate (increase) country holdings significantly? (*Fire sales (and purchases)*)
 - Do correlated fire sales across global funds that own a market lead to significant price movements in that market?

- To use new asset pricing methods to shed light on the mechanics of contagion.
- Question: Are funding shocks that hit global asset management funds transmitted to emerging markets?
 - Do global funds that experience outflows (inflows) liquidate (increase) country holdings significantly? (*Fire sales (and purchases)*)
 - Do correlated fire sales across global funds that own a market lead to significant price movements in that market?
 - Does this mechanism help predict when correlations between developed and emerging markets will increase?

Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.

- Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.
- Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).

- Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.
- Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).
- Measure the quantum of emerging market capitalization that is At-Risk of fire sales.

- Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.
- Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).
- Measure the quantum of emerging market capitalization that is At-Risk of fire sales.
 - Document price effects on emerging markets from being At-Risk.

- Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.
- Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).
- Measure the quantum of emerging market capitalization that is At-Risk of fire sales.
 - Document price effects on emerging markets from being At-Risk.
 - Output: Check how upside and downside correlations with developed markets are affected by being At-Risk.

- Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.
- Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).
- Measure the quantum of emerging market capitalization that is At-Risk of fire sales.
 - Document price effects on emerging markets from being At-Risk.
 - Check how upside and downside correlations with developed markets are affected by being At-Risk.
- Robustness checks.

- Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.
- Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).
- Measure the quantum of emerging market capitalization that is At-Risk of fire sales.
 - Document price effects on emerging markets from being At-Risk.
 - Check how upside and downside correlations with developed markets are affected by being At-Risk.
- Robustness checks.
 - Estimate *predicted* At-Risk to see if we can anticipate the impacts.

- Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.
- Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).
- Measure the quantum of emerging market capitalization that is At-Risk of fire sales.
 - Document price effects on emerging markets from being At-Risk.
 - Check how upside and downside correlations with developed markets are affected by being At-Risk.
- Robustness checks.
 - Estimate *predicted* At-Risk to see if we can anticipate the impacts.
 - **②** Estimate regime-switching model to evaluate correlation changes.

イロト イ理ト イヨト イヨト

- Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.
- Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).
- Measure the quantum of emerging market capitalization that is At-Risk of fire sales.
 - Document price effects on emerging markets from being At-Risk.
 - Check how upside and downside correlations with developed markets are affected by being At-Risk.
- Robustness checks.
 - Estimate *predicted* At-Risk to see if we can anticipate the impacts.
 - **②** Estimate regime-switching model to evaluate correlation changes.
- Solution Do global funds attempt to offset the price impact of fire sales?

イロト イ理ト イヨト イヨト

• Global fund data from Emerging Portfolio Fund Research (EPFR)

- Sample period: February 1996 to October 2008.
- Monthly data, on 1,097 global funds which invest in emerging markets, domiciled predominately in the U.S.(50-60%), U.K.(8-9%) and Luxembourg (15-25%).
- Total net asset values (*TNA*); fund returns; inflow or outflow from the funds; percentage of fund assets allocated to each country.
- *TNA* and return data compared to CRSP mutual fund database, cross-sectional correlation close to 1.
- S&P Emerging Markets Database (EMDB) and the World Bank's World Development Indicators Database.
 - Country index return, market capitalization, and trading volume.

Comparison with US Treasury (TIC) Data

Ramadorai (SBS, Oxford-Man, CEPR)

9/2009 8/21

Summary Statistics

Country	Number of Funds	Mean	Standard Deviation
Argentina	248	2.55	2.54
Brazil	352	4.00	1.29
Chile	253	1.95	0.73
China	614	1.40	1.02
Colombia	139	0.69	0.62
Czech Republic	246	3.88	2.23
Hong Kong	646	2.30	0.85
Hungary	275	9.22	3.69
India	518	3.82	1.28
Indonesia	461	3.77	1.56
Israel	269	1.62	0.87
Jordan	32	0.11	0.11
Malaysia	450	1.83	0.93
Mexico	315	5.83	1.62
Morocco	55	0.38	0.25
Pakistan	118	1.18	1.27
Philippines	348	2.73	1.08
Poland	262	5.20	2.65
Russia	358	3.92	1.32
South Africa	271	1.59	0.62
South Korea	567	4.98	2.04
Taiwan	569	2.88	1.46
Thailand	468	3.86	1.46
Turkey	285	3.44	1.53
Venezuela	151	2.35	2.34
Average	307	3.02	1.41

Holding (% of Market Capitalization)

Ramadorai (SBS, Oxford-Man, CEPR)

∎ ► ≣ ∽ি৭ে 9/2009 9/21

ヘロト ヘロト ヘヨト ヘヨト

Global Fund Flows and Reallocations

• How do movements in fund flows affect funds' allocation decisions?

- How do movements in fund flows affect funds' allocation decisions?
 - First, sort fund-months into deciles according to fund flows.

- How do movements in fund flows affect funds' allocation decisions?
 - First, sort fund-months into deciles according to fund flows.
 - Then, look at reallocations relative to a buy-and-hold benchmark.

- How do movements in fund flows affect funds' allocation decisions?
 - First, sort fund-months into deciles according to fund flows.
 - Then, look at reallocations relative to a buy-and-hold benchmark.
 - Positions can be expanded, reduced or eliminated.

- How do movements in fund flows affect funds' allocation decisions?
 - First, sort fund-months into deciles according to fund flows.
 - Then, look at reallocations relative to a buy-and-hold benchmark.
 - Positions can be expanded, reduced or eliminated.
- Also compute *predicted* (not just realized) flows to see if forced reallocations are predictable (so not driven by information).

- How do movements in fund flows affect funds' allocation decisions?
 - First, sort fund-months into deciles according to fund flows.
 - Then, look at reallocations relative to a buy-and-hold benchmark.
 - Positions can be expanded, reduced or eliminated.
- Also compute *predicted* (not just realized) flows to see if forced reallocations are predictable (so not driven by information).

• Standard model (see Sirri and Tufano (1998)):

$$flow_{j,t} = a + \sum_{k=1}^{12} b_k \cdot flow_{j,t-k} + \sum_{h=1}^{12} c_h \cdot R_{j,t-h}$$

- How do movements in fund flows affect funds' allocation decisions?
 - First, sort fund-months into deciles according to fund flows.
 - Then, look at reallocations relative to a buy-and-hold benchmark.
 - Positions can be expanded, reduced or eliminated.
- Also compute *predicted* (not just realized) flows to see if forced reallocations are predictable (so not driven by information).

• Standard model (see Sirri and Tufano (1998)):

$$flow_{j,t} = a + \sum_{k=1}^{12} b_k \cdot flow_{j,t-k} + \sum_{h=1}^{12} c_h \cdot R_{j,t-h}$$

• *R*² of 27%, using Fama-Macbeth (1973) regressions.

Decile	Flow (%)	% Countries Expanded	% Countries Reduced	% Countries Eliminated
1 (Inflows)	13.55	78.58	19.91	1.50
2	3.35	62.77	35.72	1.50
3	1.13	53.95	44.75	1.30
4	0.16	47.86	50.97	1.17
5	-0.05	47.47	51.42	1.11
6	-0.54	45.43	52.90	1.67
7	-1.29	42.38	55.71	1.91
8	-2.39	37.89	60.29	1.83
9	-4.41	32.50	65.55	1.95
10 (Outflows)	-12.61	21.58	75.10	3.31
1-10	26.16	57.00	-55.19	-1.81
t-statistic		(40.36)	(-39.63)	(-5.17)

Ramadorai (SBS, Oxford-Man, CEPR)

< 口 > < 🗇

9/2009 11/21

-

▶ < <u>=</u> ▶ <

Decile	E[Flow] (%)	% Countries Expanded	% Countries Reduced	% Countries Eliminated
1 (Inflows)	4.64	59.09	39.45	1.46
2	1.57	53.17	45.26	1.57
3	0.53	50.08	48.61	1.31
4	-0.07	48.44	50.14	1.42
5	-0.55	46.00	52.57	1.43
6	-1.05	45.29	52.97	1.74
7	-1.62	44.38	53.85	1.77
8	-2.33	43.23	54.90	1.87
9	-3.38	41.65	56.07	2.28
10 (Outflows)	-6.35	39.27	58.32	2.40
1-10	10.99	19.82	-18.87	-0.94
t-statistic		(11.66)	(-11.35)	(-4.10)

• Do coordinated fire sales of a market affect prices?

- Do coordinated fire sales of a market affect prices?
- We measure country-capital **At-Risk** as the product of three ingredients.

- Do coordinated fire sales of a market affect prices?
- We measure country-capital **At-Risk** as the product of three ingredients.
- (Say) Fidelity's *TNA* at December 2007 is 100 MM USD.

- Do coordinated fire sales of a market affect prices?
- We measure country-capital **At-Risk** as the product of three ingredients.
- (Say) Fidelity's *TNA* at December 2007 is 100 MM USD.
- If Fidelity's allocation to India in December 2007 is 25%, and

- Do coordinated fire sales of a market affect prices?
- We measure country-capital **At-Risk** as the product of three ingredients.
- (Say) Fidelity's *TNA* at December 2007 is 100 MM USD.
- If Fidelity's allocation to India in December 2007 is 25%, and
- Solution: Fidelity's total outflow in November-December-January is -20%,

- Do coordinated fire sales of a market affect prices?
- We measure country-capital **At-Risk** as the product of three ingredients.
- (Say) Fidelity's *TNA* at December 2007 is 100 MM USD.
- 2 If Fidelity's allocation to India in December 2007 is 25%, and
- **)** Fidelity's total outflow in November-December-January is -20%,
- Fidelity-India At-Risk dollars, end-January 2008: -5 MM USD.

- Do coordinated fire sales of a market affect prices?
- We measure country-capital **At-Risk** as the product of three ingredients.
- (Say) Fidelity's *TNA* at December 2007 is 100 MM USD.
- 2 If Fidelity's allocation to India in December 2007 is 25%, and
- **)** Fidelity's total outflow in November-December-January is -20%,
- Fidelity-India At-Risk dollars, end-January 2008: -5 MM USD.
- Aggregate across all funds holding Indian equities over the same period.

- Do coordinated fire sales of a market affect prices?
- We measure country-capital **At-Risk** as the product of three ingredients.
- (Say) Fidelity's *TNA* at December 2007 is 100 MM USD.
- 2 If Fidelity's allocation to India in December 2007 is 25%, and
- **)** Fidelity's total outflow in November-December-January is -20%,
- Fidelity-India At-Risk dollars, end-January 2008: -5 MM USD.
- Aggregate across all funds holding Indian equities over the same period.

• In maths, At-Risk_{k,t} =
$$\sum_{j=1}^{N} flow_{j,t}^* \cdot allocation_{j,k,t-1} \cdot TNA_{j,t-1}$$

At-Risk Quintile	At-Risk Measured as % of Market Capitalization	At-Risk Measured as % of Average Monthly Volume	Holding of Sample Funds as % of Market Capitalization
1 (Positive)	0.219	8.055	4.814
2	0.049	2.451	2.733
3	0.008	0.586	1.380
4	-0.012	-0.758	1.624
5 (Negative)	-0.109	-3.375	3.879
1-5	0.328	11.430	0.935
<i>t</i> -statistic		(24.39)	(5.32)

Quintile Calendar	Average Return (%)			
Portfolio	All G7 Premium > 0		G7 Premium < 0	
1 (Positive)	1.91	5.35	-2.83	
2	1.38	4.53	-2.98	
3	0.54	3.76	-3.92	
4	0.63	3.82	-3.78	
5 (Negative)	0.63	4.04	-4.09	
1-5	1.28	1.30	1.26	
t-statistic	(2.58)	(2.37)	(1.62)	
		<u> </u>		

9/2009 15/21

3 N

• Emerging markets most At-Risk of fire sales (Q5) and purchases (Q1), earn mean monthly returns of 63 and 191 bp.

- Emerging markets most At-Risk of fire sales (Q5) and purchases (Q1), earn mean monthly returns of 63 and 191 bp.
- Annualized return difference of 15.4% for the zero-investment portfolio long Q1 short Q5 is highly significant.

- Emerging markets most At-Risk of fire sales (Q5) and purchases (Q1), earn mean monthly returns of 63 and 191 bp.
- Annualized return difference of 15.4% for the zero-investment portfolio long Q1 short Q5 is highly significant.
- Q1 and Q5 portfolio returns have a strong link to the sign of the G-7 return.

- Emerging markets most At-Risk of fire sales (Q5) and purchases (Q1), earn mean monthly returns of 63 and 191 bp.
- Annualized return difference of 15.4% for the zero-investment portfolio long Q1 short Q5 is highly significant.
- Q1 and Q5 portfolio returns have a strong link to the sign of the G-7 return.
 - When G-7 returns are positive, Q1 portfolio outperforms Q5 portfolio by 130 bp per month.

- Emerging markets most At-Risk of fire sales (Q5) and purchases (Q1), earn mean monthly returns of 63 and 191 bp.
- Annualized return difference of 15.4% for the zero-investment portfolio long Q1 short Q5 is highly significant.
- Q1 and Q5 portfolio returns have a strong link to the sign of the G-7 return.
 - When G-7 returns are positive, Q1 portfolio outperforms Q5 portfolio by 130 bp per month.
 - When G-7 returns are negative, Q1 *still outperforms* Q5 by 126 bp per month.

- Emerging markets most At-Risk of fire sales (Q5) and purchases (Q1), earn mean monthly returns of 63 and 191 bp.
- Annualized return difference of 15.4% for the zero-investment portfolio long Q1 short Q5 is highly significant.
- Q1 and Q5 portfolio returns have a strong link to the sign of the G-7 return.
 - When G-7 returns are positive, Q1 portfolio outperforms Q5 portfolio by 130 bp per month.
 - When G-7 returns are negative, Q1 *still outperforms* Q5 by 126 bp per month.
- Switching beta: Q1-Q5 long-short portfolio has positive beta in good times, negative beta in bad times.

イロト イ理ト イヨト イヨトー

- Emerging markets most At-Risk of fire sales (Q5) and purchases (Q1), earn mean monthly returns of 63 and 191 bp.
- Annualized return difference of 15.4% for the zero-investment portfolio long Q1 short Q5 is highly significant.
- Q1 and Q5 portfolio returns have a strong link to the sign of the G-7 return.
 - When G-7 returns are positive, Q1 portfolio outperforms Q5 portfolio by 130 bp per month.
 - When G-7 returns are negative, Q1 *still outperforms* Q5 by 126 bp per month.
- Switching beta: Q1-Q5 long-short portfolio has positive beta in good times, negative beta in bad times.
- More formal calendar-time regressions confirm this.

イロト イ理ト イヨト イヨトー

• Our story: when stock returns in G-7 markets are low,

- Our story: when stock returns in G-7 markets are low,
- Investors in G-7 markets face margin calls.

- Our story: when stock returns in G-7 markets are low,
- Investors in G-7 markets face margin calls.
- They liquidate investments, including foreign investments undertaken through global funds.

- Our story: when stock returns in G-7 markets are low,
- Investors in G-7 markets face margin calls.
- They liquidate investments, including foreign investments undertaken through global funds.
- Higher outflows cause more pressure for fire-sales by global funds.

- Our story: when stock returns in G-7 markets are low,
- Investors in G-7 markets face margin calls.
- They liquidate investments, including foreign investments undertaken through global funds.
- Higher outflows cause more pressure for fire-sales by global funds.
- This depresses the returns of At-Risk emerging markets, causing high correlation of their returns with G-7 markets.

- Our story: when stock returns in G-7 markets are low,
- Investors in G-7 markets face margin calls.
- They liquidate investments, including foreign investments undertaken through global funds.
- Higher outflows cause more pressure for fire-sales by global funds.
- This depresses the returns of At-Risk emerging markets, causing high correlation of their returns with G-7 markets.
 - Related to Calvo's (2005) argument about leveraged foreign investors.

- Our story: when stock returns in G-7 markets are low,
- Investors in G-7 markets face margin calls.
- They liquidate investments, including foreign investments undertaken through global funds.
- Higher outflows cause more pressure for fire-sales by global funds.
- This depresses the returns of At-Risk emerging markets, causing high correlation of their returns with G-7 markets.
 - Related to Calvo's (2005) argument about leveraged foreign investors.
 - Similar findings (and explanation) in Boyer, Kumagai and Yuan (2006) for correlations of returns on investable emerging market indices with G-7 returns.

				~
	At-Risk Sort	At-Risk Sort	Predicted At- Risk Sort	Predicted At- Risk Sort
	At-KISK SOIT	At-KISK SOIT	KISK SOIT	KISK SOIT
Intercept	0.013**	-0.001	-0.001	-0.017*
	(0.005)	(0.008)	(0.006)	(0.009)
G7 Risk Premium	0.005		-0.038	
	(0.091)		(0.160)	
Positive G7 Risk Premium		0.510***		0.542**
		(0.191)		(0.261)
Negative G7 Risk Premium		-0.324**		-0.400*
-		(0.140)		(0.241)
Ν	150	150	139	139
R-squared	0.00	0.04	0.00	0.05

Is this driven by fund holdings or fund flows?

- a. We repeat analysis for portfolios of countries that are most (Q1) and least (Q5) held by global funds.
 - * Positive beta in both states (upside and downside), and no alpha. Different mechanism.
- Perhaps dividing into positive and negative G-7 returns does not actually capture times of 'distress'.
 - a. We estimate a two-state regime-switching model for the G-7 risk premium to check if our results still hold up.
 - * Results are robust.

Do Global Funds Try to Offset These Price Effects? Trading Cost Estimates: Elkins-McSherry.

Decile	Flow (%)	Countries Expanded	Countries Reduced or Eliminated
1 (Inflows)	13.55	56.16	61.32
2 (milows)	3.35	55.36	57.67
3	1.13	55.90	56.85
4	0.16	57.63	58.39
5	-0.05	58.21	58.21
6	-0.54	56.36	55.82
7	-1.29	56.72	55.28
8	-2.39	58.36	55.73
9	-4.41	58.66	56.22
10 (Outflows)	-12.61	61.33	55.78
1-10	26.16	-5.17	5.54
t-statistic		(-4.56)	(5.65)

Ramadorai (SBS, Oxford-Man, CEPR)

9/2009 20/21

 Global funds facing significant outflows (inflows) reduce/eliminate holdings in 78% (21%) of the markets in which they invest.

- Global funds facing significant outflows (inflows) reduce/eliminate holdings in 78% (21%) of the markets in which they invest.
- Global funds facing significant inflows (outflows) expand holdings in 79% (22%) of the markets in which they invest.

- Global funds facing significant outflows (inflows) reduce/eliminate holdings in 78% (21%) of the markets in which they invest.
- Global funds facing significant inflows (outflows) expand holdings in 79% (22%) of the markets in which they invest.
- We measure the quantum of emerging market capitalization that is **At-Risk** from such fire sales.

- Global funds facing significant outflows (inflows) reduce/eliminate holdings in 78% (21%) of the markets in which they invest.
- Global funds facing significant inflows (outflows) expand holdings in 79% (22%) of the markets in which they invest.
- We measure the quantum of emerging market capitalization that is **At-Risk** from such fire sales.
 - Emerging markets severely At-Risk significantly underperform those that are likely to be purchased (15.4% annualized).

- Global funds facing significant outflows (inflows) reduce/eliminate holdings in 78% (21%) of the markets in which they invest.
- Global funds facing significant inflows (outflows) expand holdings in 79% (22%) of the markets in which they invest.
- We measure the quantum of emerging market capitalization that is **At-Risk** from such fire sales.
 - Emerging markets severely At-Risk significantly underperform those that are likely to be purchased (15.4% annualized).
 - Asymmetric betas: When G-7 returns are positive (negative), countries with positive (negative) At-Risk capital have significantly larger G-7 betas.

- Global funds facing significant outflows (inflows) reduce/eliminate holdings in 78% (21%) of the markets in which they invest.
- Global funds facing significant inflows (outflows) expand holdings in 79% (22%) of the markets in which they invest.
- We measure the quantum of emerging market capitalization that is **At-Risk** from such fire sales.
 - Emerging markets severely At-Risk significantly underperform those that are likely to be purchased (15.4% annualized).
 - Asymmetric betas: When G-7 returns are positive (negative), countries with positive (negative) At-Risk capital have significantly larger G-7 betas.
- Indings are robust to a variety of changes in specifications

- Global funds facing significant outflows (inflows) reduce/eliminate holdings in 78% (21%) of the markets in which they invest.
- Global funds facing significant inflows (outflows) expand holdings in 79% (22%) of the markets in which they invest.
- We measure the quantum of emerging market capitalization that is **At-Risk** from such fire sales.
 - Emerging markets severely At-Risk significantly underperform those that are likely to be purchased (15.4% annualized).
 - Asymmetric betas: When G-7 returns are positive (negative), countries with positive (negative) At-Risk capital have significantly larger G-7 betas.
- Indings are robust to a variety of changes in specifications
- Also find that global funds attempt to offset price impact of fire sales. Clearly they are unable to offset this completely.