Asset Fire Sales and Purchases and the International Transmission of Funding Shocks

Pab Jotikasthira, Chris Lundblad and Tarun Ramadorai

SBS, Oxford-Man, CEPR

September 2009
Contagion is the transmission of shocks between countries beyond any fundamental link among the countries and beyond common shocks.
Contagion

- *Contagion* is the transmission of shocks between countries beyond any fundamental link among the countries and beyond common shocks.

- A policy-relevant topic. If we can distinguish when transmission is contagious (not ‘real’), can respond appropriately.
Contagion

Contagion is the transmission of shocks between countries beyond any fundamental link among the countries and beyond common shocks.

- A policy-relevant topic. If we can distinguish when transmission is contagious (not ‘real’), can respond appropriately.

- Recent episodes associated with contagion:
Contagion

- *Contagion* is the transmission of shocks between countries beyond any fundamental link among the countries and beyond common shocks.
 - A policy-relevant topic. If we can distinguish when transmission is contagious (not ‘real’), can respond appropriately.

- Recent episodes associated with contagion:
 - **Russian Default, 1998.**
Contagion is the transmission of shocks between countries beyond any fundamental link among the countries and beyond common shocks.

A policy-relevant topic. If we can distinguish when transmission is contagious (not ‘real’), can respond appropriately.

Recent episodes associated with contagion:

- Asian Crisis, 1997.
Several economists have emphasized that financial frictions are important.
Several economists have emphasized that financial frictions are important.

- Calvo (2005): informed, leveraged, investment managers (‘Wall Street’) are the conduit for shock transmission.
Several economists have emphasized that financial frictions are important.

- Calvo (2005): informed, leveraged, investment managers (‘Wall Street’) are the conduit for shock transmission.
- Pavlova and Rigobon (2009): investors’ portfolio constraints are important for cross-border shock propagation.
Where Does Contagion Come From?

- Several economists have emphasized that financial frictions are important.
 - Calvo (2005): informed, leveraged, investment managers (‘Wall Street’) are the conduit for shock transmission.
 - Pavlova and Rigobon (2009): investors’ portfolio constraints are important for cross-border shock propagation.
Several economists have emphasized that financial frictions are important.

- Calvo (2005): informed, leveraged, investment managers (‘Wall Street’) are the conduit for shock transmission.
- Pavlova and Rigobon (2009): investors’ portfolio constraints are important for cross-border shock propagation.

The growing empirical evidence on this channel is supportive (but not conclusive).
Several economists have emphasized that financial frictions are important.

- Calvo (2005): informed, leveraged, investment managers (‘Wall Street’) are the conduit for shock transmission.
- Pavlova and Rigobon (2009): investors’ portfolio constraints are important for cross-border shock propagation.

The growing empirical evidence on this channel is supportive (but not conclusive).

Asset pricing theorists and empiricists have recently been thinking about a similar problem.
Asset pricing theorists and empiricists have recently been thinking about a similar problem.

- **Theory:** How is asset market liquidity (and hence prices) affected by funding available to intermediaries?
Asset pricing theorists and empiricists have recently been thinking about a similar problem.

Theory: How is asset market liquidity (and hence prices) affected by funding available to intermediaries?

Asset pricing theorists and empiricists have recently been thinking about a similar problem.

Theory: How is asset market liquidity (and hence prices) affected by funding available to intermediaries?

Empirics: Coval and Stafford (2007) investigate price determination for U.S. stocks.
Asset pricing theorists and empiricists have recently been thinking about a similar problem.

Theory: How is asset market liquidity (and hence prices) affected by funding available to intermediaries?

Empirics: Coval and Stafford (2007) investigate price determination for U.S. stocks.

- Mutual (and hedge) funds are often forced to redeem investments in response to funding shocks from their investor base.
Asset pricing theorists and empiricists have recently been thinking about a similar problem.

Theory: How is asset market liquidity (and hence prices) affected by funding available to intermediaries?

- Mutual (and hedge) funds are often forced to redeem investments in response to funding shocks from their investor base.
- Correlated forced redemptions (or ‘fire sales’) across institutions holding a particular stock lead to significant (but temporary) price falls.
Focus of This Paper

- To use new asset pricing methods to shed light on the mechanics of contagion.
Focus of This Paper

- To use new asset pricing methods to shed light on the mechanics of contagion.
- Question: Are funding shocks that hit global asset management funds transmitted to emerging markets?
Focus of This Paper

- To use new asset pricing methods to shed light on the mechanics of contagion.
- Question: Are funding shocks that hit global asset management funds transmitted to emerging markets?
 - Do global funds that experience outflows (inflows) liquidate (increase) country holdings significantly? (*Fire sales (and purchases)*)
Focus of This Paper

- To use new asset pricing methods to shed light on the mechanics of contagion.
- Question: Are funding shocks that hit global asset management funds transmitted to emerging markets?
 - Do global funds that experience outflows (inflows) liquidate (increase) country holdings significantly? (*Fire sales (and purchases)*)
 - Do correlated fire sales across global funds that own a market lead to significant price movements in that market?
Focus of This Paper

- To use new asset pricing methods to shed light on the mechanics of contagion.
- Question: Are funding shocks that hit global asset management funds transmitted to emerging markets?
 - Do global funds that experience outflows (inflows) liquidate (increase) country holdings significantly? *(Fire sales (and purchases))*
 - Do correlated fire sales across global funds that own a market lead to significant price movements in that market?
- Does this mechanism help predict when correlations between developed and emerging markets will increase?
Approach

1. Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.

2. Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).

3. Measure the quantum of emerging market capitalization that is At-Risk of fire sales.

4. Document price effects on emerging markets from being At-Risk.

5. Check how upside and downside correlations with developed markets are affected by being At-Risk.

4. Robustness checks.

1. Estimate predicted At-Risk to see if we can anticipate the impacts.

2. Estimate regime-switching model to evaluate correlation changes.

5. Do global funds attempt to offset the price impact of fire sales?
Approach

1. Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.

2. Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).

3. Measure the quantum of emerging market capitalization that is At-Risk of fire sales.

4. Document price effects on emerging markets from being At-Risk.

5. Check how upside and downside correlations with developed markets are affected by being At-Risk.

6. Do global funds attempt to offset the price impact of fire sales?

7. Ramadorai (SBS, Oxford-Man, CEPR)

8. NIPFP-DEA Research Meeting 9/2009 6/21
Approach

1. Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.

2. Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).

3. Measure the quantum of emerging market capitalization that is At-Risk of fire sales.

4. Document price effects on emerging markets from being At-Risk.

5. Check how upside and downside correlations with developed markets are affected by being At-Risk.

6. Robustness checks.

 1. Estimate predicted At-Risk to see if we can anticipate the impacts.

 2. Estimate regime-switching model to evaluate correlation changes.
Approach

1. Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.

2. Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).

3. Measure the quantum of emerging market capitalization that is **At-Risk** of fire sales.

 1. Document price effects on emerging markets from being At-Risk.

4. Robustness checks.

 1. Estimate predicted At-Risk to see if we can anticipate the impacts.

 2. Estimate regime-switching model to evaluate correlation changes.

5. Do global funds attempt to offset the price impact of fire sales?
Approach

1. Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.

2. Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).

3. Measure the quantum of emerging market capitalization that is At-Risk of fire sales.

 1. Document price effects on emerging markets from being At-Risk.
 2. Check how upside and downside correlations with developed markets are affected by being At-Risk.

4. Robustness checks.

 1. Estimate predicted At-Risk to see if we can anticipate the impacts.
 2. Estimate regime-switching model to evaluate correlation changes.

5. Do global funds attempt to offset the price impact of fire sales?
Approach

1. Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.

2. Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).

3. Measure the quantum of emerging market capitalization that is At-Risk of fire sales.
 - Document price effects on emerging markets from being At-Risk.
 - Check how upside and downside correlations with developed markets are affected by being At-Risk.

4. Robustness checks.
Approach

1. Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.
2. Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).
3. Measure the quantum of emerging market capitalization that is **At-Risk** of fire sales.
 - Document price effects on emerging markets from being At-Risk.
 - Check how upside and downside correlations with developed markets are affected by being At-Risk.
4. Robustness checks.
 - Estimate *predicted* At-Risk to see if we can anticipate the impacts.
Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.

Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).

Measure the quantum of emerging market capitalization that is At-Risk of fire sales.

1. Document price effects on emerging markets from being At-Risk.
2. Check how upside and downside correlations with developed markets are affected by being At-Risk.

Robustness checks.

1. Estimate *predicted* At-Risk to see if we can anticipate the impacts.
2. Estimate regime-switching model to evaluate correlation changes.
Approach

1. Employ monthly portfolio allocation and investor flow data on over 1,000 global funds from EPFR Inc.

2. Sorting fund-months by inflows and outflows, document the incidence of global fund fire sales (and purchases).

3. Measure the quantum of emerging market capitalization that is At-Risk of fire sales.

 1. Document price effects on emerging markets from being At-Risk.
 2. Check how upside and downside correlations with developed markets are affected by being At-Risk.

4. Robustness checks.

 1. Estimate predicted At-Risk to see if we can anticipate the impacts.
 2. Estimate regime-switching model to evaluate correlation changes.

5. Do global funds attempt to offset the price impact of fire sales?
The Data

- Global fund data from Emerging Portfolio Fund Research (EPFR)
 - Monthly data, on 1,097 global funds which invest in emerging markets, domiciled predominately in the U.S.(50-60%), U.K.(8-9%) and Luxembourg (15-25%).
 - Total net asset values (TNA); fund returns; inflow or outflow from the funds; percentage of fund assets allocated to each country.
 - TNA and return data compared to CRSP mutual fund database, cross-sectional correlation close to 1.

- S&P Emerging Markets Database (EMDB) and the World Bank’s World Development Indicators Database.
 - Country index return, market capitalization, and trading volume.
Comparison with US Treasury (TIC) Data

Hong Kong

Russia
<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Funds</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>248</td>
<td>2.55</td>
<td>2.54</td>
</tr>
<tr>
<td>Brazil</td>
<td>352</td>
<td>4.00</td>
<td>1.29</td>
</tr>
<tr>
<td>Chile</td>
<td>253</td>
<td>1.95</td>
<td>0.73</td>
</tr>
<tr>
<td>China</td>
<td>614</td>
<td>1.40</td>
<td>1.02</td>
</tr>
<tr>
<td>Colombia</td>
<td>139</td>
<td>0.69</td>
<td>0.62</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>246</td>
<td>3.88</td>
<td>2.23</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>646</td>
<td>2.30</td>
<td>0.85</td>
</tr>
<tr>
<td>Hungary</td>
<td>275</td>
<td>9.22</td>
<td>3.69</td>
</tr>
<tr>
<td>India</td>
<td>518</td>
<td>3.82</td>
<td>1.28</td>
</tr>
<tr>
<td>Indonesia</td>
<td>461</td>
<td>3.77</td>
<td>1.56</td>
</tr>
<tr>
<td>Israel</td>
<td>269</td>
<td>1.62</td>
<td>0.87</td>
</tr>
<tr>
<td>Jordan</td>
<td>32</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Malaysia</td>
<td>450</td>
<td>1.83</td>
<td>0.93</td>
</tr>
<tr>
<td>Mexico</td>
<td>315</td>
<td>5.83</td>
<td>1.62</td>
</tr>
<tr>
<td>Morocco</td>
<td>55</td>
<td>0.38</td>
<td>0.25</td>
</tr>
<tr>
<td>Pakistan</td>
<td>118</td>
<td>1.18</td>
<td>1.27</td>
</tr>
<tr>
<td>Philippines</td>
<td>348</td>
<td>2.73</td>
<td>1.08</td>
</tr>
<tr>
<td>Poland</td>
<td>262</td>
<td>5.20</td>
<td>2.65</td>
</tr>
<tr>
<td>Russia</td>
<td>358</td>
<td>3.92</td>
<td>1.32</td>
</tr>
<tr>
<td>South Africa</td>
<td>271</td>
<td>1.59</td>
<td>0.62</td>
</tr>
<tr>
<td>South Korea</td>
<td>567</td>
<td>4.98</td>
<td>2.04</td>
</tr>
<tr>
<td>Taiwan</td>
<td>569</td>
<td>2.88</td>
<td>1.46</td>
</tr>
<tr>
<td>Thailand</td>
<td>468</td>
<td>3.86</td>
<td>1.46</td>
</tr>
<tr>
<td>Turkey</td>
<td>285</td>
<td>3.44</td>
<td>1.53</td>
</tr>
<tr>
<td>Venezuela</td>
<td>151</td>
<td>2.35</td>
<td>2.34</td>
</tr>
<tr>
<td>Average</td>
<td>307</td>
<td>3.02</td>
<td>1.41</td>
</tr>
</tbody>
</table>
How do movements in fund flows affect funds’ allocation decisions?

First, sort fund-months into deciles according to fund flows. Then, look at reallocations relative to a buy-and-hold benchmark. Positions can be expanded, reduced or eliminated. Also compute predicted (not just realized) flows to see if forced reallocations are predictable (so not driven by information).

Standard model (see Sirri and Tufano (1998)):

$$flow_{j,t} = a + 12 \sum_{k=1}^{12} b_k flow_{j,t-k} + 12 \sum_{h=1}^{12} c_h R_{j,t-h}$$

of 27%, using Fama-Macbeth (1973) regressions.
How do movements in fund flows affect funds’ allocation decisions?

First, sort fund-months into deciles according to fund flows.

Predicted (not just realized) flows to see if forced reallocations are predictable (so not driven by information).

Standard model (see Sirri and Tufano (1998)):

$$\text{flow}_{j,t} = a + 12 \sum_{k=1}^{12} b_k \text{flow}_{j,t-k} + 12 \sum_{h=1}^{12} c_h R_{j,t-h}$$

R^2 of 27%, using Fama-Macbeth (1973) regressions.
Global Fund Flows and Reallocations

- How do movements in fund flows affect funds’ allocation decisions?
 - First, sort fund-months into deciles according to fund flows.
 - Then, look at reallocations relative to a buy-and-hold benchmark.
How do movements in fund flows affect funds’ allocation decisions?

- First, sort fund-months into deciles according to fund flows.
- Then, look at reallocations relative to a buy-and-hold benchmark.
- Positions can be expanded, reduced or eliminated.
How do movements in fund flows affect funds’ allocation decisions?

- First, sort fund-months into deciles according to fund flows.
- Then, look at reallocations relative to a buy-and-hold benchmark.
- Positions can be expanded, reduced or eliminated.

Also compute predicted (not just realized) flows to see if forced reallocations are predictable (so not driven by information).
How do movements in fund flows affect funds’ allocation decisions?

- First, sort fund-months into deciles according to fund flows.
- Then, look at reallocations relative to a buy-and-hold benchmark.
- Positions can be expanded, reduced or eliminated.

Also compute predicted (not just realized) flows to see if forced reallocations are predictable (so not driven by information).

- Standard model (see Sirri and Tufano (1998)):

\[
flow_{j,t} = a + \sum_{k=1}^{12} b_k \cdot flow_{j,t-k} + \sum_{h=1}^{12} c_h \cdot R_{j,t-h}
\]
Global Fund Flows and Reallocations

- How do movements in fund flows affect funds’ allocation decisions?
 - First, sort fund-months into deciles according to fund flows.
 - Then, look at reallocations relative to a buy-and-hold benchmark.
 - Positions can be expanded, reduced or eliminated.

- Also compute *predicted* (not just realized) flows to see if forced reallocations are predictable (so not driven by information).
 - Standard model (see Sirri and Tufano (1998)):
 \[
 \text{flow}_{j,t} = a + \sum_{k=1}^{12} b_k \cdot \text{flow}_{j,t-k} + \sum_{h=1}^{12} c_h \cdot R_{j,t-h}
 \]
 - \(R^2\) of 27%, using Fama-Macbeth (1973) regressions.
<table>
<thead>
<tr>
<th>Decile</th>
<th>Flow (%)</th>
<th>% Countries Expanded</th>
<th>% Countries Reduced</th>
<th>% Countries Eliminated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Inflows)</td>
<td>13.55</td>
<td>78.58</td>
<td>19.91</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>3.35</td>
<td>62.77</td>
<td>35.72</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>1.13</td>
<td>53.95</td>
<td>44.75</td>
<td>1.30</td>
</tr>
<tr>
<td>4</td>
<td>0.16</td>
<td>47.86</td>
<td>50.97</td>
<td>1.17</td>
</tr>
<tr>
<td>5</td>
<td>-0.05</td>
<td>47.47</td>
<td>51.42</td>
<td>1.11</td>
</tr>
<tr>
<td>6</td>
<td>-0.54</td>
<td>45.43</td>
<td>52.90</td>
<td>1.67</td>
</tr>
<tr>
<td>7</td>
<td>-1.29</td>
<td>42.38</td>
<td>55.71</td>
<td>1.91</td>
</tr>
<tr>
<td>8</td>
<td>-2.39</td>
<td>37.89</td>
<td>60.29</td>
<td>1.83</td>
</tr>
<tr>
<td>9</td>
<td>-4.41</td>
<td>32.50</td>
<td>65.55</td>
<td>1.95</td>
</tr>
<tr>
<td>10 (Outflows)</td>
<td>-12.61</td>
<td>21.58</td>
<td>75.10</td>
<td>3.31</td>
</tr>
</tbody>
</table>

1-10 | 26.16 | 57.00 | -55.19 | -1.81 |

\(t\)-statistic | -- | (40.36) | (-39.63) | (-5.17)
Predicted Asset Fire Sales and Purchases

<table>
<thead>
<tr>
<th>Decile</th>
<th>E[Flow] (%)</th>
<th>% Countries Expanded</th>
<th>% Countries Reduced</th>
<th>% Countries Eliminated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Inflows)</td>
<td>4.64</td>
<td>59.09</td>
<td>39.45</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>1.57</td>
<td>53.17</td>
<td>45.26</td>
<td>1.57</td>
</tr>
<tr>
<td>3</td>
<td>0.53</td>
<td>50.08</td>
<td>48.61</td>
<td>1.31</td>
</tr>
<tr>
<td>4</td>
<td>-0.07</td>
<td>48.44</td>
<td>50.14</td>
<td>1.42</td>
</tr>
<tr>
<td>5</td>
<td>-0.55</td>
<td>46.00</td>
<td>52.57</td>
<td>1.43</td>
</tr>
<tr>
<td>6</td>
<td>-1.05</td>
<td>45.29</td>
<td>52.97</td>
<td>1.74</td>
</tr>
<tr>
<td>7</td>
<td>-1.62</td>
<td>44.38</td>
<td>53.85</td>
<td>1.77</td>
</tr>
<tr>
<td>8</td>
<td>-2.33</td>
<td>43.23</td>
<td>54.90</td>
<td>1.87</td>
</tr>
<tr>
<td>9</td>
<td>-3.38</td>
<td>41.65</td>
<td>56.07</td>
<td>2.28</td>
</tr>
<tr>
<td>10 (Outflows)</td>
<td>-6.35</td>
<td>39.27</td>
<td>58.32</td>
<td>2.40</td>
</tr>
<tr>
<td>1-10</td>
<td>10.99</td>
<td>19.82</td>
<td>-18.87</td>
<td>-0.94</td>
</tr>
<tr>
<td>t-statistic</td>
<td>--</td>
<td>(11.66)</td>
<td>(-11.35)</td>
<td>(-4.10)</td>
</tr>
</tbody>
</table>
Do coordinated fire sales of a market affect prices?

\[
\text{At-Risk}_k, t = \sum_{j=1}^{N} \text{flow}_j, t \cdot \text{allocation}_j, k, t \cdot \text{TNA}_j, t
\]
Do coordinated fire sales of a market affect prices?

We measure country-capital At-Risk as the product of three ingredients.
Do coordinated fire sales of a market affect prices?

We measure country-capital at-risk as the product of three ingredients.

(Say) Fidelity’s TNA at December 2007 is 100 MM USD.
Do coordinated fire sales of a market affect prices?

We measure country-capital **At-Risk** as the product of three ingredients.

1. (Say) Fidelity’s *TNA* at December 2007 is 100 MM USD.
2. If Fidelity’s allocation to India in December 2007 is 25%, and
Do coordinated fire sales of a market affect prices?

We measure country-capital At-Risk as the product of three ingredients.

1. (Say) Fidelity’s TNA at December 2007 is 100 MM USD.
2. If Fidelity’s allocation to India in December 2007 is 25%, and
3. Fidelity’s total outflow in November-December-January is −20%,
Do coordinated fire sales of a market affect prices?

We measure country-capital **At-Risk** as the product of three ingredients.

1. (Say) Fidelity’s *TNA* at December 2007 is 100 MM USD.
2. If Fidelity’s allocation to India in December 2007 is 25%, and
3. Fidelity’s total outflow in November-December-January is $-20%$,

 Fidelity-India At-Risk dollars, end-January 2008: -5 MM USD.
Do coordinated fire sales of a market affect prices?

We measure country-capital At-Risk as the product of three ingredients.

1. (Say) Fidelity’s TNA at December 2007 is 100 MM USD.
2. If Fidelity’s allocation to India in December 2007 is 25%, and
3. Fidelity’s total outflow in November-December-January is −20%,

Fidelity-India At-Risk dollars, end-January 2008: −5 MM USD.

Aggregate across all funds holding Indian equities over the same period.
Do coordinated fire sales of a market affect prices?

We measure country-capital At-Risk as the product of three ingredients.

1. (Say) Fidelity’s TNA at December 2007 is 100 MM USD.
2. If Fidelity’s allocation to India in December 2007 is 25%, and
3. Fidelity’s total outflow in November-December-January is −20%,

Fidelity-India At-Risk dollars, end-January 2008: −5 MM USD.

Aggregate across all funds holding Indian equities over the same period.

In maths, \(\text{At-Risk}_{k,t} = \sum_{j=1}^{N} \text{flow}^*_j \cdot \text{allocation}_{j,k,t-1} \cdot \text{TNA}_{j,t-1} \)
At-Risk Across Country-Months: Magnitudes

<table>
<thead>
<tr>
<th>At-Risk Quintile</th>
<th>At-Risk Measured as % of Market Capitalization</th>
<th>At-Risk Measured as % of Average Monthly Volume</th>
<th>Holding of Sample Funds as % of Market Capitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Positive)</td>
<td>0.219</td>
<td>8.055</td>
<td>4.814</td>
</tr>
<tr>
<td>2</td>
<td>0.049</td>
<td>2.451</td>
<td>2.733</td>
</tr>
<tr>
<td>3</td>
<td>0.008</td>
<td>0.586</td>
<td>1.380</td>
</tr>
<tr>
<td>4</td>
<td>-0.012</td>
<td>-0.758</td>
<td>1.624</td>
</tr>
<tr>
<td>5 (Negative)</td>
<td>-0.109</td>
<td>-3.375</td>
<td>3.879</td>
</tr>
<tr>
<td>1-5</td>
<td>0.328</td>
<td>11.430</td>
<td>0.935</td>
</tr>
<tr>
<td>t-statistic</td>
<td>--</td>
<td>(24.39)</td>
<td>(5.32)</td>
</tr>
<tr>
<td>Quintile Calendar Portfolio</td>
<td>Average Return (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>G7 Premium > 0</td>
<td>G7 Premium < 0</td>
</tr>
<tr>
<td>1 (Positive)</td>
<td>1.91</td>
<td>5.35</td>
<td>-2.83</td>
</tr>
<tr>
<td>2</td>
<td>1.38</td>
<td>4.53</td>
<td>-2.98</td>
</tr>
<tr>
<td>3</td>
<td>0.54</td>
<td>3.76</td>
<td>-3.92</td>
</tr>
<tr>
<td>4</td>
<td>0.63</td>
<td>3.82</td>
<td>-3.78</td>
</tr>
<tr>
<td>5 (Negative)</td>
<td>0.63</td>
<td>4.04</td>
<td>-4.09</td>
</tr>
<tr>
<td>1-5</td>
<td>1.28</td>
<td>1.30</td>
<td>1.26</td>
</tr>
<tr>
<td>t-statistic [t]</td>
<td>(2.58)</td>
<td>(2.37)</td>
<td>(1.62)</td>
</tr>
</tbody>
</table>
Emerging markets most At-Risk of fire sales (Q5) and purchases (Q1), earn mean monthly returns of 63 and 191 bp.
Emerging markets most At-Risk of fire sales (Q5) and purchases (Q1), earn mean monthly returns of 63 and 191 bp.

Annualized return difference of 15.4% for the zero-investment portfolio long Q1 short Q5 is highly significant.
Emerging markets most At-Risk of fire sales (Q5) and purchases (Q1), earn mean monthly returns of 63 and 191 bp.

Annualized return difference of 15.4% for the zero-investment portfolio long Q1 short Q5 is highly significant.

Q1 and Q5 portfolio returns have a strong link to the sign of the G-7 return.

When G-7 returns are positive, Q1 portfolio outperforms Q5 portfolio by 130 bp per month.

When G-7 returns are negative, Q1 still outperforms Q5 by 126 bp per month.

Switching beta: Q1-Q5 long-short portfolio has positive beta in good times, negative beta in bad times. More formal calendar-time regressions confirm this.
Emerging markets most At-Risk of fire sales (Q5) and purchases (Q1), earn mean monthly returns of 63 and 191 bp.

Annualized return difference of 15.4% for the zero-investment portfolio long Q1 short Q5 is highly significant.

Q1 and Q5 portfolio returns have a strong link to the sign of the G-7 return.

- When G-7 returns are positive, Q1 portfolio outperforms Q5 portfolio by 130 bp per month.
Emerging markets most At-Risk of fire sales (Q5) and purchases (Q1), earn mean monthly returns of 63 and 191 bp.

Annualized return difference of 15.4% for the zero-investment portfolio long Q1 short Q5 is highly significant.

Q1 and Q5 portfolio returns have a strong link to the sign of the G-7 return.

- When G-7 returns are positive, Q1 portfolio outperforms Q5 portfolio by 130 bp per month.
- When G-7 returns are negative, Q1 still outperforms Q5 by 126 bp per month.
Emerging markets most At-Risk of fire sales (Q5) and purchases (Q1), earn mean monthly returns of 63 and 191 bp.

Annualized return difference of 15.4% for the zero-investment portfolio long Q1 short Q5 is highly significant.

Q1 and Q5 portfolio returns have a strong link to the sign of the G-7 return.

- When G-7 returns are positive, Q1 portfolio outperforms Q5 portfolio by 130 bp per month.
- When G-7 returns are negative, Q1 still outperforms Q5 by 126 bp per month.

Switching beta: Q1-Q5 long-short portfolio has positive beta in good times, negative beta in bad times.
Emerging markets most At-Risk of fire sales (Q5) and purchases (Q1), earn mean monthly returns of 63 and 191 bp.

Annualized return difference of 15.4% for the zero-investment portfolio long Q1 short Q5 is highly significant.

Q1 and Q5 portfolio returns have a strong link to the sign of the G-7 return.

- When G-7 returns are positive, Q1 portfolio outperforms Q5 portfolio by 130 bp per month.
- When G-7 returns are negative, Q1 still outperforms Q5 by 126 bp per month.

Switching beta: Q1-Q5 long-short portfolio has positive beta in good times, negative beta in bad times.

More formal calendar-time regressions confirm this.
Our story: when stock returns in G-7 markets are low,
Switching Betas: Why?

Our story: when stock returns in G-7 markets are low,

Investors in G-7 markets face margin calls.
Switching Betas: Why?

Our story: when stock returns in G-7 markets are low,

1. Investors in G-7 markets face margin calls.
2. They liquidate investments, including foreign investments undertaken through global funds.
Switching Betas: Why?

- Our story: when stock returns in G-7 markets are low,

1. Investors in G-7 markets face margin calls.
2. They liquidate investments, including foreign investments undertaken through global funds.
3. Higher outflows cause more pressure for fire-sales by global funds.

Switching Betas: Why?

Our story: when stock returns in G-7 markets are low,

1. Investors in G-7 markets face margin calls.
2. They liquidate investments, including foreign investments undertaken through global funds.
3. Higher outflows cause more pressure for fire-sales by global funds.
4. This depresses the returns of At-Risk emerging markets, causing high correlation of their returns with G-7 markets.

Switching Betas: Why?

- Our story: when stock returns in G-7 markets are low,

1. Investors in G-7 markets face margin calls.
2. They liquidate investments, including foreign investments undertaken through global funds.
3. Higher outflows cause more pressure for fire-sales by global funds.
4. This depresses the returns of At-Risk emerging markets, causing high correlation of their returns with G-7 markets.

- Related to Calvo’s (2005) argument about leveraged foreign investors.
Switching Betas: Why?

Our story: when stock returns in G-7 markets are low,

1. Investors in G-7 markets face margin calls.
2. They liquidate investments, including foreign investments undertaken through global funds.
3. Higher outflows cause more pressure for fire-sales by global funds.
4. This depresses the returns of At-Risk emerging markets, causing high correlation of their returns with G-7 markets.

- Related to Calvo’s (2005) argument about leveraged foreign investors.
- Similar findings (and explanation) in Boyer, Kumagai and Yuan (2006) for correlations of returns on investable emerging market indices with G-7 returns.
Calendar-Time Regressions

<table>
<thead>
<tr>
<th></th>
<th>At-Risk Sort</th>
<th>At-Risk Sort</th>
<th>Predicted At-Risk Sort</th>
<th>Predicted At-Risk Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.013**</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.017*</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.008)</td>
<td>(0.006)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>G7 Risk Premium</td>
<td>0.005</td>
<td></td>
<td>-0.038</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.091)</td>
<td></td>
<td>(0.160)</td>
<td></td>
</tr>
<tr>
<td>Positive G7 Risk Premium</td>
<td>0.510***</td>
<td>0.542**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.191)</td>
<td>(0.261)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative G7 Risk Premium</td>
<td>-0.324**</td>
<td>-0.400*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.140)</td>
<td>(0.241)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>150</td>
<td>150</td>
<td>139</td>
<td>139</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.00</td>
<td>0.04</td>
<td>0.00</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Ramadorai (SBS, Oxford-Man, CEPR)
Robustness Checks

1. Is this driven by fund holdings or fund flows?
 a. We repeat analysis for portfolios of countries that are most (Q1) and least (Q5) held by global funds.
 * Positive beta in both states (upside and downside), and no alpha. Different mechanism.

2. Perhaps dividing into positive and negative G-7 returns does not actually capture times of ‘distress’.
 a. We estimate a two-state regime-switching model for the G-7 risk premium to check if our results still hold up.
 * Results are robust.
Do Global Funds Try to Offset These Price Effects?

<table>
<thead>
<tr>
<th>Decile</th>
<th>Flow (%)</th>
<th>Countries Expanded</th>
<th>Countries Reduced or Eliminated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Inflows)</td>
<td>13.55</td>
<td>56.16</td>
<td>61.32</td>
</tr>
<tr>
<td>2</td>
<td>3.35</td>
<td>55.36</td>
<td>57.67</td>
</tr>
<tr>
<td>3</td>
<td>1.13</td>
<td>55.90</td>
<td>56.85</td>
</tr>
<tr>
<td>4</td>
<td>0.16</td>
<td>57.63</td>
<td>58.39</td>
</tr>
<tr>
<td>5</td>
<td>-0.05</td>
<td>58.21</td>
<td>58.21</td>
</tr>
<tr>
<td>6</td>
<td>-0.54</td>
<td>56.36</td>
<td>55.82</td>
</tr>
<tr>
<td>7</td>
<td>-1.29</td>
<td>56.72</td>
<td>55.28</td>
</tr>
<tr>
<td>8</td>
<td>-2.39</td>
<td>58.36</td>
<td>55.73</td>
</tr>
<tr>
<td>9</td>
<td>-4.41</td>
<td>58.66</td>
<td>56.22</td>
</tr>
<tr>
<td>10 (Outflows)</td>
<td>-12.61</td>
<td>61.33</td>
<td>55.78</td>
</tr>
<tr>
<td>1-10</td>
<td>26.16</td>
<td>-5.17</td>
<td>5.54</td>
</tr>
<tr>
<td>t-statistic</td>
<td>--</td>
<td>(-4.56)</td>
<td>(5.65)</td>
</tr>
</tbody>
</table>
1 Global funds facing significant outflows (inflows) reduce/eliminate holdings in 78% (21%) of the markets in which they invest.
Conclusion

1. Global funds facing significant outflows (inflows) reduce/eliminate holdings in 78% (21%) of the markets in which they invest.

2. Global funds facing significant inflows (outflows) expand holdings in 79% (22%) of the markets in which they invest.

3. We measure the quantum of emerging market capitalization that is At-Risk from such fire sales.

4. Emerging markets severely At-Risk significantly underperform those that are likely to be purchased (15.4% annualized).

5. Asymmetric betas: When G-7 returns are positive (negative), countries with positive (negative) At-Risk capital have significantly larger G-7 betas.

6. Findings are robust to a variety of changes in specifications.

7. Also find that global funds attempt to offset price impact of fire sales. Clearly they are unable to offset this completely.
Conclusion

1. Global funds facing significant outflows (inflows) reduce/eliminate holdings in 78% (21%) of the markets in which they invest.

2. Global funds facing significant inflows (outflows) expand holdings in 79% (22%) of the markets in which they invest.

3. We measure the quantum of emerging market capitalization that is At-Risk from such fire sales.
Conclusion

1. Global funds facing significant outflows (inflows) reduce/eliminate holdings in 78% (21%) of the markets in which they invest.

2. Global funds facing significant inflows (outflows) expand holdings in 79% (22%) of the markets in which they invest.

3. We measure the quantum of emerging market capitalization that is At-Risk from such fire sales.

 1. Emerging markets severely At-Risk significantly underperform those that are likely to be purchased (15.4% annualized).

Asymmetric betas: When G-7 returns are positive (negative), countries with positive (negative) At-Risk capital have significantly larger G-7 betas.

Findings are robust to a variety of changes in specifications. Also find that global funds attempt to offset price impact of fire sales. Clearly they are unable to offset this completely.
Conclusion

1. Global funds facing significant outflows (inflows) reduce/eliminate holdings in 78% (21%) of the markets in which they invest.

2. Global funds facing significant inflows (outflows) expand holdings in 79% (22%) of the markets in which they invest.

3. We measure the quantum of emerging market capitalization that is At-Risk from such fire sales.

 1. Emerging markets severely At-Risk significantly underperform those that are likely to be purchased (15.4% annualized).

 2. Asymmetric betas: When G-7 returns are positive (negative), countries with positive (negative) At-Risk capital have significantly larger G-7 betas.
Global funds facing significant outflows (inflows) reduce/eliminate holdings in 78% (21%) of the markets in which they invest.

Global funds facing significant inflows (outflows) expand holdings in 79% (22%) of the markets in which they invest.

We measure the quantum of emerging market capitalization that is At-Risk from such fire sales.

Emerging markets severely At-Risk significantly underperform those that are likely to be purchased (15.4% annualized).

Asymmetric betas: When G-7 returns are positive (negative), countries with positive (negative) At-Risk capital have significantly larger G-7 betas.

Findings are robust to a variety of changes in specifications.
Global funds facing significant outflows (inflows) reduce/eliminate holdings in 78% (21%) of the markets in which they invest.

Global funds facing significant inflows (outflows) expand holdings in 79% (22%) of the markets in which they invest.

We measure the quantum of emerging market capitalization that is At-Risk from such fire sales.

1. Emerging markets severely At-Risk significantly underperform those that are likely to be purchased (15.4% annualized).
2. Asymmetric betas: When G-7 returns are positive (negative), countries with positive (negative) At-Risk capital have significantly larger G-7 betas.

Findings are robust to a variety of changes in specifications.

Also find that global funds attempt to offset price impact of fire sales. Clearly they are unable to offset this completely.