An Estimated DSGE Model of the Indian Economy

Vasco Gabriel Paul Levine University of Surrey Joseph Pearlman London Metropolitan University Bo Yang University of Surrey & London Metropolitan University

January 30, 2011

NIPFP Research Agenda

• Build a Model of the Indian Economy that is 'fit for purpose'

- Micro-founded and more immune from the Lucas Critique
- Incorporates important features of Emerging Economies and the Indian Economy in particular
- From closed to open
- Empirically based to enable quantitative analysis.
- Hence DSGE Model estimated by Bayesian-Maximum-Likelihood Methods with calibrated values or estimates from microeconometric studies as priors
- Compare the welfare outcome of Taylor-type simple rules rules with existing policy

The Work So Far

- This paper: estimates a closed economy model with financial and labour market frictions and formal/informal sectors
- Model fitted to data on GDP, CPI inflation, Investment and a Nominal Interest Rate
- Papers on the Informal Economy: a survey [Batini et al.(2010b)]– and a study of monetary policy and the informal economy – [Batini et al.(2010c)]
- A paper on the Open Economy: [Batini et al.(2010a)], drawing on [Batini et al.(2007)] and [Batini et al.(2009)]
- Related paper: [Anand et al.(2010)]

Modelling Methodology

- Build up the model in stages
- Model 1: A standard NK model fitted to both Indian and US Data
- Model 2: Add financial frictions
- Model 3: Add informal sector with labour market frictions
- Questions:
 - What is different about the Indian (compared with the US) Economy ?
 - Do the new features improve the fit of the model?
 - Does Bayesian ML Estimation in Model 3 provide information about the size of the informal sector?

The Models: From RBC to NK

An RBC Core

- Household make an intertemporal utility-maximizing choice of consumption and labour supply over time subject to a budget constraint
- Firms produce output according to a production technology and choose labour and capital inputs to minimize cost
- Labour, output and financial markets clear
- Add investment adjustment costs
- Add monopolistic competition in retail market and price stickiness
- Add an interest rate Taylor rule with persistence
- Arrive at the standard NK Model

A Calvo-Type Interest Rate Taylor Rule

• Following [Levine *et al.*(2007)] and [Gabriel *et al.*(2009)], we model monetary policy in a very general way by formulating a Calvo-type forward-backward interest rate rule:

$$\log\left(\frac{1+R_{n,t}}{1+R_n}\right) = \rho \log\left(\frac{1+R_{n,t-1}}{1+R_n}\right) + \theta \log\frac{\Theta_t}{\Theta} + \phi \log\frac{\Phi_t}{\Phi} + \epsilon_{MPS,t}$$

where $\epsilon_{MPS,t}$ is a monetary policy shock and

$$\varphi E_t[\log \Theta_{t+1}] = \log \Theta_t - (1 - \varphi) \log(\Pi_t)$$
$$\log \Phi_t = \log \Pi_t + \tau \log \Phi_{t-1}$$

- Interpret as a feedback from expected inflation with mean forecast horizon $(1 \varphi) \sum_{h=1}^{\infty} h\varphi^h = \varphi/(1 \varphi)$
- Similarly, τ can be interpreted as the degree of backward-lookingness of the monetary authority

Results for NK Model: US

Standard Deviation							
Model	Output	Inflation	Interest rate	Investment			
Data	2.06	0.48	0.92	8.47			
NK Model	2.87	0.38	0.64	8.51			
Cross-correlation with Output							
Data	1.00	-0.02	0.14	0.56			
NK Model	1.00	0.38	0.40	0.73			
Autocorrelations (Order=1)							
Data	0.91	0.85	0.94	0.95			
NK Model	0.96	0.70	0.91	0.96			

Table: Selected Second Moments - US Economy (80:1-06:4)

Results for NK Model: India

Standard Deviation							
Model	Output	Output Inflation Interest rate		Investment			
Data	1.22	0.97	1.93	5.30			
NK Model 2.02 1.04		1.41	7.59				
Cross-correlation with Output							
Data	1.00	0.11	0.32	0.42			
NK Model 1	1.00	0.27	0.05	0.50			
Autocorrelations (Order=1)							
Data	0.44	0.13	0.83	0.88			
NK Model	0.74	0.05	0.71	0.93			

Table: Selected Second Moments - Indian Economy (96:1-08:4)

Financial Frictions: The Financial Accelerator

• Financial Accelerator facing firms: risk premium \uparrow with leverage

Balance Sheet :
$$\underbrace{Q_{t-1}K_t}_{Capital} = \underbrace{N_t}_{Equity} + \underbrace{B_t}_{External Finance}$$

Leverage : $\frac{B_t}{N_t} = \frac{Q_{t-1}K_t - N_t}{N_t}$
Risk Premium = $\Theta_t = k \left(\frac{Q_{t-1}K_t}{N_t}\right)^{\chi} \underbrace{RPS_t}_{Exog Shock}$

• Suppose Θ is observed (see [Haugen(2005)].) Let $n_k \equiv \frac{N}{QK} = \frac{1}{1+\ell}$ where ℓ is leverage. Then we can set the scaling parameter k as $k = \Theta n_k^{\chi}$

Financial Frictions: Rule of Thumb Consumers

• A proportion λ of households are credit-constrained

• $C_{2,t}$ given by the standard Euler-consumption equation

The Informal Sector

According to [Sen and Kolli(2009)] and [Rada(2009)] the broad characteristics of the informal sector are

- Individual or household enterprises
- No complete accounts
- Produces some marketable goods and services
- Not registered
- 90% workers are in the I-sector producing 50% of GDP

Table: Characterizing Informality in the Model

	Lab. Market	Credit Market	Taxation	Lab. Share
F Sector	frictions	lower frictions	taxed	lower
I Sector	no frictions	higher frictions	untaxed	higher

The Model: Overview

- We consider a two-sector "Formal" (F) and "Informal" (I) economy, producing different range of differentiated goods with different technologies which sell at different aggregate retail prices, $P_{F,t}$ and $P_{I,t}$
- Distortionary (employment) taxes in the F-sector
- Real wage norm in the F-sector
- Capital and government services part of the F-sector
- Different FAs in the two sectors; higher steady-state risk premium in the I-sector
- A proportion $n_{F,t}$ of Ricardian households work in the F-sector. All non-Ricardian households work in the I-sector

The Model: Structure

page 13 of 21

The Model: Some Details

• The real wage in the F-sector given by a real wage norm RW_t that is a mark-up *rw* on the real wage in the informal sector:

$$rac{W_{F,t}}{P_t}=RW_t=(1+\mathit{rw})rac{W_{I,t}}{P_t};\;\mathit{rw}>0$$

• On the demand side of the model we construct Dixit-Stiglitz consumption and price aggregates

$$C_{t} = \left[w^{\frac{1}{\mu}} C_{F,t}^{\frac{\mu-1}{\mu}} + (1-w)^{\frac{1}{\mu}} C_{I,t}^{\frac{\mu-1}{\mu}} \right]^{\frac{\mu}{\mu-1}}$$
$$P_{t} = \left[w(P_{F,t})^{1-\mu} + (1-w)(P_{I,t})^{1-\mu} \right]^{\frac{1}{1-\mu}}$$

where μ is the elasticity of substitution between I and F goods, and w is a preference "parameter". Then standard results are:

$$C_{F,t} = w \left(\frac{P_{F,t}}{P_t}\right)^{-\mu} C_t; \quad C_{I,t} = (1 - w) \left(\frac{P_{I,t}}{P_t}\right)^{-\mu} C_t$$

Calibration and Priors

• We calibrate the model to fit two variables for which we have information: relative nos of workers (rel_n) and relative GDP contributions $(rel_Y \equiv \frac{P_F Y_F}{P_I Y_I})$. Let n_F be the proportion of Ricardian households in the F-sector. From the model we have: $(1 - \lambda)n_F$

$$rel_{n} = \frac{(1-\lambda)n_{F}}{(1-\lambda)(1-n_{F})+\lambda}$$
(1)
$$rel_{Y} = \frac{P_{F}Y_{F}}{P_{I}Y_{I}} = \frac{w\left(\frac{P_{F}}{P}\right)^{1-\mu}\bar{C}_{t} + \left(\frac{P_{F}}{P}\right)(\bar{I}_{t}+\bar{G}_{t})}{(1-w)\left(\frac{P_{I}}{P}\right)^{1-\mu}\bar{C}_{t}}$$
(2)

• From (2) we can solve for w to obtain

$$w = \frac{\operatorname{rel}_{Y}\left(\frac{P_{I}}{P}\right)^{1-\mu}\bar{C}_{t} - \left(\frac{P_{F}}{P}\right)(\bar{I}_{t} + \bar{G}_{t})}{\left(\frac{P_{F}}{P}\right)^{1-\mu}\bar{C}_{t} + \operatorname{rel}_{Y}\left(\frac{P_{I}}{P}\right)^{1-\mu}\bar{C}_{t}}$$

page 15 of 21

Calibration of *rw* and α_I to fit *rel_n* and *rel_Y*. Labour shares $\alpha_I = 0.8 > \alpha_F$.

page 16 of 21

Bayesian Estimation

Parameter	Notation	Prior d	or distribution		Posterior distribution \diamond
		Density	Mean	S.D/df	
Calvo prices (F)	ξ _F	Beta	0.75	0.15	0.75 [0.57:0.95]
Calvo prices (I)	ξı	Beta	0.75	0.15	0.30 [0.15:0.43]
Labour share (F)	α_F	Beta	0.60	0.10	0.68 [0.60:0.76]
Labour share (I)	α_I	Beta	0.80	0.10	0.74 [0.61:0.87]
Preference parameter	ρ	Beta	0.50	0.20	0.22 [0.10:0.31]
Degree of Labour market frictions	r _W	Beta	0.75	0.10	0.78 [0.64:0.92]
GDP Contribution	$rel_Y \equiv \frac{P_F Y_F}{P_I Y_I}$	Normal	1.00	0.50	1.15 [0.67:1.64]
Employment Ratio	reln	n.a.	0.20	n.a.	0.28 [0.22:0.35]
External finance premium elasticity (F)	XF	Inv. gamma	0.05	4.00	0.05 [0.01:0.10]
External finance premium elasticity (I)	χ_I	Inv. gamma	0.05	4.00	0.03 [0.01:0.05]
Inverse of Leverage (F)	n _F	Beta	0.5	0.15	0.53 [0.29:0.75]
Inverse of Leverage (I)	nı	Beta	0.5	0.15	0.61 [0.39:0.81]
Proportion of RT consumers	λ	Beta	0.40	0.10	0.30 [0.19:0.43]
Interest rate rule					
Interest rate smoothing	ρ	Beta	0.75	0.10	0.80 [0.68:0.93]
Feedback from expected inflation	θ	Normal	2.00	1.00	2.40 [1.09:3.53]
Feedback from past inflation	ϕ	Normal	2.00	1.00	1.00 [0.15:1.76]
Degree of forward-lookingness	φ	Beta	0.50	0.20	0.50 [0.21:0.78]
Degree of backward-lookingness	au	Beta	0.50	0.20	0.50 [0.15:0.88]

 \diamond We report posterior means and 95% probability intervals (in parentheses) except for *reln* which has an unknown distribution

Bayesian Estimation: Summary

• Model Comparison: Decisive Support for FF and an I-Sector

Model	LL	Probability
NK	-358.95	0.0005
NK+FF	-356.28	0.0067
NK+FF+I-Sector	-350.73	0.9928

- Average Price Contract lengths : 4.02 quarters (F-sector) and 1.43 (I-sector). Suggests I-sector prices are more flexible
- · I-sector less leveraged, but with a weaker FA
- Stronger forward-looking response to inflation in the Calvo interest rate rule; but data is not informative on average lags
- Data is informative about the size of the informal sector.

Model Validation I: Selected Second Moments

Standard Deviation							
Model	Output	Inflation	Interest rate	Investment			
Data	1.22	0.97	1.93	5.30			
NK Model	2.02	1.04	1.41	7.59			
NK Model with FA	2.42	1.02	1.76	8.37			
2-sector NK Model	1.59	0.97	1.84	7.80			
Cross-correlation with Output							
Data	1.00	0.11	0.32	0.42			
NK Model 1	1.00	0.27	0.05	0.50			
NK Model with FA	1.00	0.14	0.44	0.46			
2-sector NK Model	1.00	0.18	0.31	0.29			
Autocorrelations (Order=1)							
Data	0.44	0.13	0.83	0.88			
NK Model	0.74	0.05	0.71	0.96			
NK Model with FA	0.79	-0.23	0.82	0.96			
2-sector NK Model	0.70	-0.11	0.88	0.93			

Table: Selected Second Moments - Indian Economy (96:1-08:4)

Model Validation II: Autocorrelations

Work-in-progress

- Which Steady-State? We have assumed a non-growth zero-inflation steady state. We should be assuming a balanced-growth non-zero-inflation steady state with a stochastic trend as in [Schmitt-Grohe and Uribe(2008)]
- Trending issues? Trend agnostic one-step estimation (Ferroni, 2010)
- Endogenous Calvo Price Contracts that decrease in duration as steady-state inflation increases
- Add openness and do the policy analysis to complete the project
 - Model_SOE 1: A standard open-economy NK model
 - Model_SOE 2: An open-economy NK model with financial frictions
 - Model_SOE 3: An open-economy NK model with financial frictions and incomplete exchange rate pass-through.

- Anand, R., Peiris, S., and Saxegaard, M. (2010).
 An Estimated Model with Macrofinancial Linkages for India.
 IMF Working Paper, WP/10/21.
- Batini, N., Levine, P., and Pearlman, J. (2007). Monetary Rules in Emerging Economies with Financial Market Imperfections.

Presented to the NBER Conference on International Dimensions of Monetary Policy, S'Agaro, Catalonia, Spain, June 11-13, 2007 and NBER Conference Volume, International Dimensions of Monetary Policy, ed. J. Gali and M. Gertler.

- Batini, N., Levine, P., and Pearlman, J. (2009).
 Monetary and Fiscal Rules in an Emerging Small Open Economy.
 IMF Working Paper, WP/09/22.
 - Batini, N., Gabriel, V., Levine, P., and Pearlman, J. (2010a).

page 21 of 21

A Floating versus Managed Exchange Rate Regime in a DSGE Model of India .

University of Surrey Working Paper.

- Batini, N., Kim, Y.-B., Levine, P., and Lotti, E. (2010b).
 Informal Labour and Credit Markets: A Survey.
 IMF Working Paper, WP/10/42.
- Batini, N., Levine, P., and Lotti, E. (2010c).
 Informality and Optimal Monetary Policy.
 Forthcoming IMF Working Paper.
- Gabriel, V. J., Levine, P., and Spencer, C. (2009).
 How Forward-Looking is the Fed? Direct Estimates from a 'Calvo-type' rule.

Economics Letters, **104**(2), 92–95.

Haugen, N. (2005).

page 21 of 21

The Informal Credit Market: A Study of Default and Informal Lending in Nepal.

Mimeo, University of Bergen.

Levine, P., McAdam, P., and Pearlman, J. (2007).
 Inflation forecast rules and indeterminacy: a puzzle and a resolution.

International Journal of Central Banking, 3, 77–110.

Rada, C. (2009).

Formal and Informal Sectors in China and India: An Accounting-Based Approach .

Mimeo, Working Paper No: 2009-02 University of Utah. .

Schmitt-Grohe, S. and Uribe, M. (2008).
 What's News in Business Cycles.
 National Bureau of Economic Research.

Sen, P. and Kolli, R. (2009).

Delhi Group on Informal Sector Contribution and Present Status . Mimeo, Ministry of Statistics and Programme Implementation, India. Paper Prepared for the Special IARIW-SAIM Conference on Measuring the Informal Economy in Developing Countries Kathmandu, Nepal, September 23-26.