Trade Credit and International Stock Return Comovement

Rui Albuquerque, Tarun Ramadorai and Sumudu W. Watugala

SBS, Oxford-Man, CEPR

August 2010

Ramadorai (SBS, Oxford-Man, CEPR)

NIPFP-DEA Research Meeting

9/2010 1/27

International Return Comovement

• Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).

International Return Comovement

- Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).
- A challenge for economists.

International Return Comovement

- Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).
- A challenge for economists.
 - What mechanisms cause shocks to economic fundamentals to be propagated across markets?

- Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).
- A challenge for economists.
 - What mechanisms cause shocks to economic fundamentals to be propagated across markets?
 - Is transmission through real channels, or only the actions of financial intermediaries?

- Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).
- A challenge for economists.
 - What mechanisms cause shocks to economic fundamentals to be propagated across markets?
 - Is transmission through real channels, or only the actions of financial intermediaries?
- Significant policy-relevance:

- Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).
- A challenge for economists.
 - What mechanisms cause shocks to economic fundamentals to be propagated across markets?
 - Is transmission through real channels, or only the actions of financial intermediaries?
- Significant policy-relevance:
 - Stock prices are important signals of value for resource allocation.

- Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).
- A challenge for economists.
 - What mechanisms cause shocks to economic fundamentals to be propagated across markets?
 - Is transmission through real channels, or only the actions of financial intermediaries?
- Significant policy-relevance:
 - Stock prices are important signals of value for resource allocation.
 - Firms' investments are potentially affected.

- Stock returns in different countries display significant comovement (Credit crunch, Asian crisis, Russian crisis).
- A challenge for economists.
 - What mechanisms cause shocks to economic fundamentals to be propagated across markets?
 - Is transmission through real channels, or only the actions of financial intermediaries?
- Significant policy-relevance:
 - Stock prices are important signals of value for resource allocation.
 - Firms' investments are potentially affected.
 - Wealth shocks cause redistributions.

• Much of the literature has emphasized the role of *financial intermediaries*.

- Much of the literature has emphasized the role of *financial intermediaries*.
 - Theory: Calvo (2005), Pavlova and Rigobon (2009), Kyle and Xiong (2001), Kodres and Pritsker (2002), Yuan (2005).

- Much of the literature has emphasized the role of *financial intermediaries*.
 - Theory: Calvo (2005), Pavlova and Rigobon (2009), Kyle and Xiong (2001), Kodres and Pritsker (2002), Yuan (2005).
 - Empirics: Kaminsky and Reinhart (2000), Kaminsky, Lyons and Schmukler (2004), Boyer, Kumagai and Yuan (2006), Hau and Rey (2008a, 2008b), Jotikasthira, Lundblad and Ramadorai (2010).

- Much of the literature has emphasized the role of *financial intermediaries*.
 - Theory: Calvo (2005), Pavlova and Rigobon (2009), Kyle and Xiong (2001), Kodres and Pritsker (2002), Yuan (2005).
 - Empirics: Kaminsky and Reinhart (2000), Kaminsky, Lyons and Schmukler (2004), Boyer, Kumagai and Yuan (2006), Hau and Rey (2008a, 2008b), Jotikasthira, Lundblad and Ramadorai (2010).
- Our focus is on the *comovement of fundamentals*.

- Much of the literature has emphasized the role of *financial intermediaries*.
 - Theory: Calvo (2005), Pavlova and Rigobon (2009), Kyle and Xiong (2001), Kodres and Pritsker (2002), Yuan (2005).
 - Empirics: Kaminsky and Reinhart (2000), Kaminsky, Lyons and Schmukler (2004), Boyer, Kumagai and Yuan (2006), Hau and Rey (2008a, 2008b), Jotikasthira, Lundblad and Ramadorai (2010).
- Our focus is on the *comovement of fundamentals*.
- We study *trade credit links* between firms in different countries.

- Much of the literature has emphasized the role of *financial intermediaries*.
 - Theory: Calvo (2005), Pavlova and Rigobon (2009), Kyle and Xiong (2001), Kodres and Pritsker (2002), Yuan (2005).
 - Empirics: Kaminsky and Reinhart (2000), Kaminsky, Lyons and Schmukler (2004), Boyer, Kumagai and Yuan (2006), Hau and Rey (2008a, 2008b), Jotikasthira, Lundblad and Ramadorai (2010).
- Our focus is on the *comovement of fundamentals*.
- We study *trade credit links* between firms in different countries.
 - Introduces a link between the fundamentals of these firms.

- Much of the literature has emphasized the role of *financial intermediaries*.
 - Theory: Calvo (2005), Pavlova and Rigobon (2009), Kyle and Xiong (2001), Kodres and Pritsker (2002), Yuan (2005).
 - Empirics: Kaminsky and Reinhart (2000), Kaminsky, Lyons and Schmukler (2004), Boyer, Kumagai and Yuan (2006), Hau and Rey (2008a, 2008b), Jotikasthira, Lundblad and Ramadorai (2010).
- Our focus is on the *comovement of fundamentals*.
- We study *trade credit links* between firms in different countries.
 - Introduces a link between the fundamentals of these firms.
 - Model of return correlations and empirical tests.

• Trade credit is an important source of financing for many firms.

• Trade credit is an important source of financing for many firms.

• (Mian and Smith, 1992, 1994), Petersen and Rajan (1994a, 1995), Biais and Gollier (1997), Wilner (2000), Cuñat (2007).

- Trade credit is an important source of financing for many firms.
 - (Mian and Smith, 1992, 1994), Petersen and Rajan (1994a, 1995), Biais and Gollier (1997), Wilner (2000), Cuñat (2007).
- Especially important in emerging markets; alternative source of growth financing when formal credit markets are thin.

- Trade credit is an important source of financing for many firms.
 - (Mian and Smith, 1992, 1994), Petersen and Rajan (1994a, 1995), Biais and Gollier (1997), Wilner (2000), Cuñat (2007).
- Especially important in emerging markets; alternative source of growth financing when formal credit markets are thin.
 - Demirguc-Kunt and Maksimovic (2001), Fisman and Love (2003).

- Trade credit is an important source of financing for many firms.
 - (Mian and Smith, 1992, 1994), Petersen and Rajan (1994a, 1995), Biais and Gollier (1997), Wilner (2000), Cuñat (2007).
- Especially important in emerging markets; alternative source of growth financing when formal credit markets are thin.
 - Demirguc-Kunt and Maksimovic (2001), Fisman and Love (2003).
- Neglected in the study of stock return comovement.

9/2010 5/27

9/2010 6/27

 Build a two-country, two-period model of representative firms connected by trade credit links.

- Build a two-country, two-period model of representative firms connected by trade credit links.
 - Segmented stock markets, asymmetrically informed speculators, domestic investors.

- Build a two-country, two-period model of representative firms connected by trade credit links.
 - Segmented stock markets, asymmetrically informed speculators, domestic investors.
- Model implies cross-serial correlations of stock returns across countries.

- Build a two-country, two-period model of representative firms connected by trade credit links.
 - Segmented stock markets, asymmetrically informed speculators, domestic investors.
- Model implies cross-serial correlations of stock returns across countries.
 - Comparative statics: higher trade credit implies higher cross-serial correlation.

- Build a two-country, two-period model of representative firms connected by trade credit links.
 - Segmented stock markets, asymmetrically informed speculators, domestic investors.
- Model implies cross-serial correlations of stock returns across countries.
 - Comparative statics: higher trade credit implies higher cross-serial correlation.
- Employ firm-level data from 55 countries from 1993 to 2009, to provide empirical support for the model.

- Build a two-country, two-period model of representative firms connected by trade credit links.
 - Segmented stock markets, asymmetrically informed speculators, domestic investors.
- Model implies cross-serial correlations of stock returns across countries.
 - Comparative statics: higher trade credit implies higher cross-serial correlation.
- Employ firm-level data from 55 countries from 1993 to 2009, to provide empirical support for the model.
 - Producer-customer relationships, high and low trade credit firms.

- Build a two-country, two-period model of representative firms connected by trade credit links.
 - Segmented stock markets, asymmetrically informed speculators, domestic investors.
- Model implies cross-serial correlations of stock returns across countries.
 - Comparative statics: higher trade credit implies higher cross-serial correlation.
- Employ firm-level data from 55 countries from 1993 to 2009, to provide empirical support for the model.
 - Producer-customer relationships, high and low trade credit firms.
- Robustness checks.

- Build a two-country, two-period model of representative firms connected by trade credit links.
 - Segmented stock markets, asymmetrically informed speculators, domestic investors.
- Model implies cross-serial correlations of stock returns across countries.
 - Comparative statics: higher trade credit implies higher cross-serial correlation.
- Employ firm-level data from 55 countries from 1993 to 2009, to provide empirical support for the model.
 - Producer-customer relationships, high and low trade credit firms.
- Robustness checks.
 - Size and short-term debt double sorts.

イロト イ理ト イヨト イヨト

• Two dates, *t* = 1, 2 and 2 countries, 'consumer' country (*C*) and 'producer' country (*P*).

- Two dates, *t* = 1, 2 and 2 countries, 'consumer' country (*C*) and 'producer' country (*P*).
- 1 μ_i investors in country i = C, P invest only domestically, μ_i investors invest in both countries (*speculators*).

- Two dates, *t* = 1, 2 and 2 countries, 'consumer' country (*C*) and 'producer' country (*P*).
- 1 μ_i investors in country i = C, P invest only domestically, μ_i investors invest in both countries (*speculators*).
 - Market segmentation as in Merton (1987), Albuquerque et al., (2007).

- Two dates, *t* = 1, 2 and 2 countries, 'consumer' country (*C*) and 'producer' country (*P*).
- 1 μ_i investors in country i = C, P invest only domestically, μ_i investors invest in both countries (*speculators*).
 - Market segmentation as in Merton (1987), Albuquerque et al., (2007).
- All investors have CARA utility with *γ* > 0 on date-2 wealth, *W*₂, and initial endowment *W*₁ > 0.

- Two dates, *t* = 1, 2 and 2 countries, 'consumer' country (*C*) and 'producer' country (*P*).
- 1 μ_i investors in country i = C, P invest only domestically, μ_i investors invest in both countries (*speculators*).
 - Market segmentation as in Merton (1987), Albuquerque et al., (2007).
- All investors have CARA utility with *γ* > 0 on date-2 wealth, *W*₂, and initial endowment *W*₁ > 0.
- Storage technology r = 0.
Basic Setup

- Two dates, *t* = 1, 2 and 2 countries, 'consumer' country (*C*) and 'producer' country (*P*).
- 1 μ_i investors in country i = C, P invest only domestically, μ_i investors invest in both countries (*speculators*).
 - Market segmentation as in Merton (1987), Albuquerque et al., (2007).
- All investors have CARA utility with *γ* > 0 on date-2 wealth, *W*₂, and initial endowment *W*₁ > 0.
- Storage technology r = 0.
- Exogenous, random supply of shares z^i , mean zero, variance σ_{zi}^2 .

Basic Setup

- Two dates, *t* = 1, 2 and 2 countries, 'consumer' country (*C*) and 'producer' country (*P*).
- 1 μ_i investors in country i = C, P invest only domestically, μ_i investors invest in both countries (*speculators*).
 - Market segmentation as in Merton (1987), Albuquerque et al., (2007).
- All investors have CARA utility with *γ* > 0 on date-2 wealth, *W*₂, and initial endowment *W*₁ > 0.
- Storage technology r = 0.
- Exogenous, random supply of shares z^i , mean zero, variance σ_{zi}^2 .
- Rational expectations equilibrium, investors take prices as given and solve for asset demands.

Basic Setup

- Two dates, *t* = 1, 2 and 2 countries, 'consumer' country (*C*) and 'producer' country (*P*).
- 1 μ_i investors in country i = C, P invest only domestically, μ_i investors invest in both countries (*speculators*).
 - Market segmentation as in Merton (1987), Albuquerque et al., (2007).
- All investors have CARA utility with *γ* > 0 on date-2 wealth, *W*₂, and initial endowment *W*₁ > 0.
- Storage technology r = 0.
- Exogenous, random supply of shares z^i , mean zero, variance σ_{zi}^2 .
- Rational expectations equilibrium, investors take prices as given and solve for asset demands.
- Equilibrium price is such that total stock demand equals total stock supply.

ヘロト ヘアト ヘビト ヘビト

Consumer :
$$D_t^C = \varepsilon_t^C + u_t^C$$
.
Producer : $D_t^P = \alpha D_t^C + \varepsilon_t^P + u_t^P, \alpha > 0$

Consumer :
$$D_t^C = \varepsilon_t^C + u_t^C$$
.
Producer : $D_t^P = \alpha D_t^C + \varepsilon_t^P + u_t^P, \alpha > 0$

• All shocks normal,
$$\sigma_{\varepsilon C}^2, \sigma_{u C}^2, \sigma_{\varepsilon P}^2, \sigma_{u P}^2$$
.

Consumer :
$$D_t^C = \varepsilon_t^C + u_t^C$$
.
Producer : $D_t^P = \alpha D_t^C + \varepsilon_t^P + u_t^P, \alpha > 0$

- All shocks normal, $\sigma_{\epsilon C}^2, \sigma_{u C}^2, \sigma_{\epsilon P}^2, \sigma_{u P}^2$.
- Level of trade credit is α . Note also: $\mathbb{E}[D_t^P D_t^C] = \alpha \sigma_{\varepsilon C}^2$

Consumer : $D_t^C = \varepsilon_t^C + u_t^C$. Producer : $D_t^P = \alpha D_t^C + \varepsilon_t^P + u_t^P, \alpha > 0$

- All shocks normal, $\sigma_{\varepsilon C}^2, \sigma_{u C}^2, \sigma_{\varepsilon P}^2, \sigma_{u P}^2$.
- Level of trade credit is α . Note also: $E[D_t^P D_t^C] = \alpha \sigma_{eC}^2$
- We leave unmodeled the choice of trade credit. Reduced form, so we can focus on asset pricing effects.

• Speculators hold assets from both two countries, have better information than domestics.

- Speculators hold assets from both two countries, have better information than domestics.
 - Speculators learn both shocks, ε^C and ε^P .

- Speculators hold assets from both two countries, have better information than domestics.
 - Speculators learn both shocks, ε^{C} and ε^{P} .
- Write $\bar{D}_t^C = \varepsilon_t^C$ and $\bar{D}_t^P = \alpha \varepsilon_t^C + \varepsilon_t^P$, then dividends can be represented as:

$$D_t^C = \bar{D}_t^C + u_t^C$$

$$D_t^P = \bar{D}_t^P + \alpha u_t^C + u_t^P$$

- Speculators hold assets from both two countries, have better information than domestics.
 - Speculators learn both shocks, ε^{C} and ε^{P} .
- Write $\bar{D}_t^C = \varepsilon_t^C$ and $\bar{D}_t^P = \alpha \varepsilon_t^C + \varepsilon_t^P$, then dividends can be represented as:

$$D_t^C = \bar{D}_t^C + u_t^C$$

$$D_t^P = \bar{D}_t^P + \alpha u_t^C + u_t^P.$$

• \bar{D}_t^i is the speculators' expectation of the future dividend conditional on the signal, u^i is the forecast error made by speculators.

- Speculators hold assets from both two countries, have better information than domestics.
 - Speculators learn both shocks, ε^{C} and ε^{P} .
- Write $\bar{D}_t^C = \varepsilon_t^C$ and $\bar{D}_t^P = \alpha \varepsilon_t^C + \varepsilon_t^P$, then dividends can be represented as:

$$D_t^C = \bar{D}_t^C + u_t^C$$

$$D_t^P = \bar{D}_t^P + \alpha u_t^C + u_t^P.$$

- \bar{D}_t^i is the speculators' expectation of the future dividend conditional on the signal, u^i is the forecast error made by speculators.
- Domestic investors learn from prices, but only from local prices.

• Domestic demand:

$$\theta_t^i = \frac{\mathbf{E}_t^d \left[D_{t+1}^i - P_t^i \right]}{\gamma \mathbf{Var}_t^d \left[D_{t+1}^i - P_t^i \right]}.$$

イロト イロト イヨト イヨ

• Domestic demand:

$$\theta_t^i = \frac{\mathbf{E}_t^d \left[D_{t+1}^i - P_t^i \right]}{\gamma \mathrm{Var}_t^d \left[D_{t+1}^i - P_t^i \right]}.$$

• Speculator demand:

$$\begin{bmatrix} \eta^{C} \\ \eta^{P} \end{bmatrix} = \frac{1}{\gamma \sigma_{uP}^{2}} \begin{bmatrix} \frac{\sigma_{uP}^{2} + \alpha^{2} \sigma_{uC}^{2}}{\sigma_{uC}^{2}} \left(\bar{D}_{t+1}^{C} - P_{t}^{C} \right) - \alpha \left(\bar{D}_{t+1}^{P} - P_{t}^{P} \right) \\ \xrightarrow{\text{Expected returns}} \begin{bmatrix} \text{Rebalancing} \\ \overline{D}_{t+1}^{P} - P_{t}^{P} \end{bmatrix} - \alpha \left(\bar{D}_{t+1}^{C} - P_{t}^{C} \right) \end{bmatrix}.$$

• Equilibrium prices:

$$P_{t}^{C} = \underbrace{\overline{D}_{t+1}^{C} - \overline{b_{CC}\left(\overline{D}_{t+1}^{C} - \mathrm{E}_{t}^{d}\left(\overline{D}_{t+1}^{C}\right)\right)}^{\text{forecast errors}}_{- b_{CP}\left(\overline{D}_{t+1}^{P} - \mathrm{E}_{t}^{d}\left(\overline{D}_{t+1}^{P}\right)\right)}_{- b_{CP}\left(\overline{D}_{t+1}^{P} - \mathrm{E}_{t}^{d}\left(\overline{D}_{t+1}^{P}\right)\right)}$$

э

• Equilibrium prices:

$$P_{t}^{C} = \overbrace{\overline{D}_{t+1}^{C} - b_{CC}\left(\overline{D}_{t+1}^{C} - E_{t}^{d}\left(\overline{D}_{t+1}^{C}\right)\right) - b_{CP}\left(\overline{D}_{t+1}^{P} - E_{t}^{d}\left(\overline{D}_{t+1}^{P}\right)\right)}^{\text{forecast errors}}$$

$$\underbrace{P_{t}^{C} = \underbrace{\overline{D}_{t+1}^{C} - b_{CC}\left(\overline{D}_{t+1}^{C} - E_{t}^{d}\left(\overline{D}_{t+1}^{C}\right)\right) - b_{CP}\left(\overline{D}_{t+1}^{P} - E_{t}^{d}\left(\overline{D}_{t+1}^{P}\right)\right)}^{\text{supply shocks}}$$

$$\underbrace{- \underbrace{h_{CC}z_{t}^{C} - h_{CP}z_{t}^{P}}^{\text{forecast errors}}$$

• We are interested in cross-country return correlation, and how it varies with level of trade credit (*α*):

$$\mathbb{E}\left[D_{t+1}^{P} - P_{t}^{P}|P_{t}^{C}\right] = \frac{\operatorname{Cov}\left(P_{t}^{C}, D_{t+1}^{P} - P_{t}^{P}\right)}{\operatorname{Var}\left(P_{t}^{C}\right)}P_{t}^{C}$$

Ramadorai (SBS, Oxford-Man, CEPR)

9/2010 12 / 27

Comparative Statics on Trade Credit

Covariance of Future Producer Return with Current Consumer Return

Ramadorai (SBS, Oxford-Man, CEPR)

9/2010 13 / 27

Baseline Empirical Methodology

< D > < 🗗

E ► E ∽ QC 9/2010 14 / 27

> < 三 > < 三 > <</p>

Ν

• Create three financial ratios for each firm-year:

- Sort firms in each producer tercile by these (lagged) ratios and evaluate their stock returns.
- Comparative statics from the model predict that high trade credit firms will have larger stock return effects.

- Worldscope: trade credit (annual), stock return (monthly), and balance-sheet (annual) information for firms.
 - Sample period 1993 to 2009.
 - 39 producer countries, 55 countries in total.
 - 32, 598 unique firms.
- Only use industrial firms (exclude transportation, utility, banking, insurance and other financial firms).
- Annual bilateral trade (import and export) data from IMF Direction of Trade Statistics
- Annual GDP data from the IMF World Economic Outlook Database.

Correlations between MSCI and constructed indices

Ramadorai (SBS, Oxford-Man, CEPR)

9/2010 17/27

Customers and Producers

Supplier-Importer strategies exist as well.

Country	Export (Customer) Links		Import (Supplier) Links		Mean	Std Dev	Total	Average	Data Pogin
	Producer	Trade Partner	Importer	Trade Partner	Returns	Returns	Firms	Firms	Date
Developed									
USA	Ν	Y	Ν	Y	0.596	4.858	10034	6949	
UK	Y	Y	Y	Y	0.637	4.405	2797	1925	
Emerging									
China	Y	Y	Y	Y	1.002	13.396	1360	724	
Russia	Y	Y	Ν	Y	2.262	14.453	103	40	1/31/1997
Brazil	Ν	Y	Ν	Y	2.064	13.446	185	136	8/31/1994
India	Ν	Y	Y	Ν	0.878	9.056	877	640	

9/2010 18 / 27

э

Country	Net Trade Credit			AR Turnover			AP Turnover		
Country	Median	Mean	Std Dev	Median	Mean	Std Dev	Median	Mean	Std Dev
Developed									
United States	0.065	0.064	0.008	0.153	0.155	0.011	0.217	0.222	0.041
United Kingdom	0.075	0.076	0.011	0.181	0.178	0.016	0.205	0.210	0.070
Emerging									
China	0.139	0.165	0.154	0.359	0.362	0.156	0.255	0.428	0.578
Russia	0.159	0.192	0.136	0.230	0.312	0.190	0.252	0.295	0.143
India	0.096	0.106	0.034	0.254	0.257	0.030	0.196	0.206	0.036
					_				

• Excess returns computed from factor models of the form:

$$r_{p,t}-r_{f,t}=\alpha_p+\sum_{j=1}^J\beta_{p,j}F_{j,t}+\varepsilon_{p,t}.$$

- J = 1, with the excess return on the MSCI world index as the factor.
- *J* = 2, adds a momentum (MOM) factor to the MSCI world index, constructed from terciles of developed country returns, sorted by their past twelve month returns.
- *J* = 3, adds a value factor (HML), constructed by sorting countries into terciles based on their value-weighted firm-level book-to-market ratios
- Newey-West (1983) standard errors.

The baseline strategy doesn't hold up over our sample period.

Customer-Producer Sorts							
Regression	Excess	One	Two	Three			
	Return	Factor	Factor	Factor			
		(+MKT)	(+MOM)	(+HML)			
Тор	0.728 [0.501]	0.488 [0.283]	0.543 [0.282]	0.511 [0.275]			
Bottom	0.281 [0.529]	0.037 [0.403]	0.167	0.110			
Top - Bottom	0.447 [0.441]	0.451 [0.445]	0.376 [0.428]	0.401 [0.455]			

э

Trade Credit Sorts - Bottom Tercile

But there is a clear separation between high and low TC firms.

Measure	Net Trade Credit			AR Turnover				
Regression	Excess Return	One Factor (+MKT)	Two Factor (+MOM)	Three Factor (+HML)	Excess Return	One Factor (+MKT)	Two Factor (+MOM)	Three Factor (+HML)
Bottom Trade								
Low TC	0.513	0.271	0.427	0.391	0.582	0.348	0.502	0.482
	[0.525]	[0.417]	[0.382]	[0.426]	[0.506]	[0.399]	[0.368]	[0.401]
High TC	-0.127	-0.368	-0.264	-0.354	-0.281	-0.538	-0.427	-0.518
	[0.569]	[0.438]	[0.403]	[0.479]	[0.636]	[0.496]	[0.447]	[0.553]
Difference	0.640	0.640	0.691	0.745	0.863	0.885	0.929	1.000
	[0.304]	[0.303]	[0.335]	[0.380]	[0.354]	[0.347]	[0.363]	[0.439]

9/2010 22 / 27

-

Trade Credit Sorts - Top Tercile

Non-monotonic, and seems to affect the bottom tercile the most.

Measure	Net Trade Credit			AR Turnover				
Regression	Excess Return	One Factor (+MKT)	Two Factor (+MOM)	Three Factor (+HML)	Excess Return	One Factor (+MKT)	Two Factor (+MOM)	Three Factor (+HML)
Top Trade								
Low TC	0.910	0.688	0.723	0.647	0.892	0.670	0.721	0.715
	[0.503]	[0.329]	[0.326]	[0.284]	[0.493]	[0.309]	[0.308]	[0.275]
High TC	0.574	0.322	0.389	0.416	0.549	0.294	0.368	0.358
	[0.537]	[0.309]	[0.303]	[0.332]	[0.552]	[0.332]	[0.322]	[0.355]
Difference	0.336	0.367	0.334	0.231	0.343	0.376	0.352	0.357
	[0.296]	[0.299]	[0.279]	[0.278]	[0.273]	[0.272]	[0.251]	[0.291]

Long-Short Portfolios Across Terciles

High monthly returns for model-implied strategies.

Measure		Net Tra	de Credit		AR Turnover			
Regression	Excess Return	One Factor (+MKT)	Two Factor (+MOM)	Three Factor (+HML)	Excess Return	One Factor (+MKT)	Two Factor (+MOM)	Three Factor (+HML)
Long Top - Short Bottom								
Low TC -High TC	0.974	0.969	0.909	0.958	1.289	1.298	1.237	1.292
	[0.472]	[0.477]	[0.455]	[0.501]	[0.493]	[0.499]	[0.459]	[0.526]
High TC -High TC	0.983	0.947	0.922	0.821	1.227	1.197	1.162	1.069
	[0.507]	[0.501]	[0.470]	[0.527]	[0.516]	[0.514]	[0.478]	[0.536]
Low TC -Low TC	0.629	0.622	0.547	0.360	0.547	0.539	0.464	0.273
	[0.409]	[0.417]	[0.390]	[0.401]	[0.438]	[0.444]	[0.428]	[0.442]
High TC -Low TC	0.638	0.601	0.560	0.223	0.485	0.438	0.389	0.049
	[0.440]	[0.436]	[0.398]	[0.426]	[0.448]	[0.436]	[0.405]	[0.422]

< 口 > < 🗇

- Trade credit may be correlated with other firm attributes that generate return spreads across firms.
 - Firm size.
 - 2 Level of short-term debt.
- We independently double-sort firms within the customer induced terciles by our trade credit measures and by these two firm attributes.
 - Return spreads across the trade credit dimension persist.

Double Sorts

Measure		AR Turnover				
			Market Cap			
Bottom Trade		Low	High	Low-High		
	Low	0.233 [0.578]	0.081 [0.512]	0.151 [0.283]		
Trade Credit	High	0.203 [0.722]	-0.649 [0.607]	0.446 [0.322]		
	Low-High	0.436 [0.258]	0.730 [0.3 <i>5</i> 3]			

Measure		AR Turnover					
		Short-term Debt					
Bottom Trade		Low	High	Low-High			
	Low	0.629 [0.509]	0.220 [0.551]	0.409 [0.285]			
Trade Credit	High	0.055 [0.685]	-0.655 [0.628]	0.710 [0.375]			
	Low-High	0.574 [0.463]	0.874 [0.274]				

Ramadorai (SBS, Oxford-Man, CEPR)

9/2010 26 / 27

▶ < E > < E</p>

 Investigate the role of trade credit in international stock return comovement.

- Investigate the role of trade credit in international stock return comovement.
- Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.

- Investigate the role of trade credit in international stock return comovement.
- Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.
 - Model predicts that increases in trade credit deliver higher cross-serial correlation of stock returns.

- Investigate the role of trade credit in international stock return comovement.
- Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.
 - Model predicts that increases in trade credit deliver higher cross-serial correlation of stock returns.
- Itest predictions of the model using customer-producer links.

- Investigate the role of trade credit in international stock return comovement.
- Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.
 - Model predicts that increases in trade credit deliver higher cross-serial correlation of stock returns.
- Itest predictions of the model using customer-producer links.
 - Find that high levels of trade credit are associated with higher cross-serial correlation.

- Investigate the role of trade credit in international stock return comovement.
- Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.
 - Model predicts that increases in trade credit deliver higher cross-serial correlation of stock returns.
- Itest predictions of the model using customer-producer links.
 - Find that high levels of trade credit are associated with higher cross-serial correlation.
- Future directions:
Conclusions and Future Directions

- Investigate the role of trade credit in international stock return comovement.
- Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.
 - Model predicts that increases in trade credit deliver higher cross-serial correlation of stock returns.
- Itest predictions of the model using customer-producer links.
 - Find that high levels of trade credit are associated with higher cross-serial correlation.
- Future directions:
 - Explore why results using APs are not as strong.

Conclusions and Future Directions

- Investigate the role of trade credit in international stock return comovement.
- Build a simple model of trade credit as the correlation of dividends across consumer and producer firms.
 - Model predicts that increases in trade credit deliver higher cross-serial correlation of stock returns.
- Itest predictions of the model using customer-producer links.
 - Find that high levels of trade credit are associated with higher cross-serial correlation.
- Future directions:
 - Explore why results using APs are not as strong.
 - Use our framework to distinguish models of contagion from fundamentals-based comovement.