Asymmetries in central bank intervention

Matthieu Stigler Ila Patnaik Ajay Shah

September 16, 2009

- 1 The question
- 2 Methodology
- 3 Data
- 4 Results

Outline

- 1 The question
- 2 Methodology
- 3 Data
- 4 Results

Understanding more-flexible but not floating rates

 Highly inflexible exchange rates: easy to understand, near-zero flexibility.

Example: China

Less inflexible exchange rates, or dirty floats
 Example: India

Fine structure of pegged exchange rates

Frankel and Wei, ZSP, methodology: classify exchange rates based on R^2 of currency basket estimation:

- Fixed pegs with $R^2 \approx 1$ nothing complicated there
- Intermediate regimes with $R^2 \approx 0.6 -0.8$
- Floating rates with $R^2 \approx 0.3 -0.4$

What is going on in this middle zone?

Three possible behaviours:

- Symmetric intervention
- Depreciation prevention

Appreciation prevention

Three possible behaviours:

- Symmetric intervention
- Depreciation prevention
 - Fears of a collapse of confidence
 - Firms have large borrowings in dollar
 - Exchange rate pass-through to inflation is high
- Appreciation prevention

Three possible behaviours:

- Symmetric intervention
- Depreciation prevention
 - Fears of a collapse of confidence
 - Firms have large borrowings in dollar
 - Exchange rate pass-through to inflation is high
- Appreciation prevention
 - Export led growth

Three possible behaviours:

- Symmetric intervention
- Depreciation prevention
 - Fears of a collapse of confidence
 - Firms have large borrowings in dollar
 - Exchange rate pass-through to inflation is high
- Appreciation prevention
 - Export led growth

Can we test for asymmetry in the behaviour of the central bank when trading on the currency market?

What might we expect?

- With wide span, when a country has had many changes in the exchange rate regime, results will be relatively unclear
- Apply ZSP methodology to identify structural breaks and sub-periods
 Focusing on sub-periods will clarify the picture
- In periods where $R^2 > 0.95$ there is no asymmetry.

Outline

- The question
- 2 Methodology
- 3 Data
- 4 Results

Methodology to test for asymmetric intervention

Methods track asymmetric behaviour:

- From exchange rate to central bank intervention.
- From central bank intervention to volatility of exchange rate

Methodology to test for asymmetric intervention

Methods track asymmetric behaviour:

- From exchange rate to central bank intervention.
- From central bank intervention to volatility of exchange rate

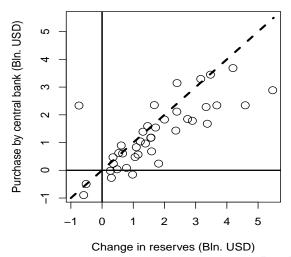
Results:

- Asian countries respond more to appreciations
- Yen: interventions more effective when massive depreciation
- India: Appreciations lead to reserve change but not depreciations

Methodology to test for asymmetric intervention

Methods track asymmetric behaviour:

- From exchange rate to central bank intervention.
- From central bank intervention to volatility of exchange rate


Results:

- Asian countries respond more to appreciations
- Yen: interventions more effective when massive depreciation
- India: Appreciations lead to reserve change but not depreciations

Some drawbacks:

- Changes in reserves as proxy for intervention
- Simultaneity/endogeneity in estimation
- Few country release daily intervention data

Changes in reserves as proxy for intervention

Models for asymmetries

- Univariate analysis on the exchange rate only
- Use regime switching models for asymmetries in appreciation/depreciation:

Definition (Regime switching Models)

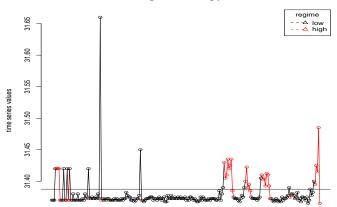
Capture regime-specific dynamics by estimating different regimes.

Threshold autoregressive processes (TAR)

Threshold auto-regressive (TAR) process of the nominal exchange rate time-series y_t :

$$y_t = \begin{cases} \mu_L + \zeta_{L1}y_{t-1} + \zeta_{L2}y_{t-2} + \ldots + \zeta_{Lp}y_{t-p} + \varepsilon_t & \text{if } y_{t-1} \leq \theta \\ \mu_H + \zeta_{H1}y_{t-1} + \zeta_{H2}y_{t-2} + \ldots + \zeta_{Hp}y_{t-p} + \varepsilon_t & \text{if } y_{t-1} > \theta \end{cases}$$

Under this model:


- Regime A: when values are below θ (low values regime)
- Regime B: when values are above θ (high values regime)

TAR models in exchange rate litterature

TAR models are popular (Obstfeld, Taylor 1996, Taylor et al. 2001) to account for:

- Link real exchange rate to LOP/PPP
- Transactions costs
- Transportations costs

Advantages/disadvantages:

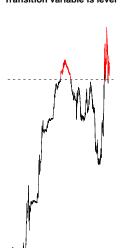
- + Indicates different behaviour with low/high exchange rate
- Clear interpretation only for fix peg

Momentum threshold-autoregressive

Same as TAR but: transition variable is in difference (M-TAR):

$$y_t = \begin{cases} \mu_L + \zeta_{L1}y_{t-1} + \zeta_{L2}y_{t-2} + \ldots + \zeta_{Lp}y_{t-p} + \varepsilon_t & \text{if} \quad \Delta y_{t-1} \le \theta \\ \mu_H + \zeta_{H1}y_{t-1} + \zeta_{H2}y_{t-2} + \ldots + \zeta_{Hp}y_{t-p} + \varepsilon_t & \text{if} \quad \Delta y_{t-1} > \theta \end{cases}$$

Example (Interpretation)


Say $\theta = 0$:

- Regime A: $\Delta y_{t-1} < 0$ for days of appreciation
- Regime B: $\Delta y_{t-1} > 0$ for days of depreciation

TAR: Illustration

Transition variable is diff

Reparametrization

We reparametrize the AR as in ADF test, from:

$$y_t = \mu_L + \zeta_{L1}y_{t-1} + \zeta_{L2}y_{t-2} + \ldots + \zeta_{Lp}y_t + \varepsilon_t$$

is equivalent to:

$$\Delta y_t = \mu_L + \rho_L y_{t-1} + \sum_{i}^{p-1} \phi_{Li} \Delta y_{t-1} + \varepsilon_t$$

We interpret ρ (= $\zeta_1 + \zeta_1 + \ldots + \zeta_p$) as mean reversion parameter:

$$\begin{array}{ll} \rho=0 & {\sf Random\ walk\ (no\ mean\ reversion)} \\ -2<\rho<0 & {\sf Stationary\ process\ (mean\ reversion\ \nearrow when\ }\rho\to-1) \end{array}$$

Testing procedure

Testing: $\rho_{Ap} \leq \rho_{Dep}$

$$ho_{Ap} <
ho_{Dep}$$
 Appreciations are more mean-reverting $ho_{Ap} >
ho_{Dep}$ Depreciations are more mean-reverting.

Interesting case:

Definition (partial unit root)

$$ho_A < 0$$
 and $ho_B = 0$

- Regime A is stationary: there is mean reversion
- Regime B has unit root: no mean reversion,

We interpret partial roots as case of asymmetric intervention.

Type of regime

Recall:

$$y_t = \begin{cases} \mu_L + \zeta_{L1}y_{t-1} + \zeta_{L2}y_{t-2} + \ldots + \zeta_{Lp}y_{t-p} + \varepsilon_t & \text{if} \quad \Delta y_{t-1} \le \theta \\ \mu_H + \zeta_{H1}y_{t-1} + \zeta_{H2}y_{t-2} + \ldots + \zeta_{Hp}y_{t-p} + \varepsilon_t & \text{if} \quad \Delta y_{t-1} > \theta \end{cases}$$

We do not impose a threshold value of 0 but estimate it.

This can then split:

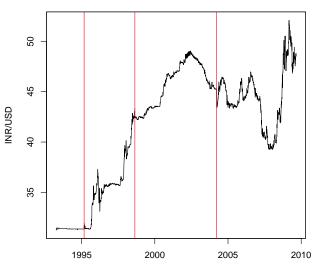
- Appreciation vs depreciation
- Normal vs extreme regime (say $\theta = -0.5$: large appreciations vs normal appreciations and all depreciations)

• Run analysis on sub-periods defined on ZSP mehodology

- Run analysis on sub-periods defined on ZSP mehodology
- Estimate the potential threshold
 - Appreciation vs depreciations? $(\theta = 0)$
 - Normal versus extreme regime?

- Run analysis on sub-periods defined on ZSP mehodology
- Estimate the potential threshold
 - Appreciation vs depreciations? $(\theta = 0)$
 - Normal versus extreme regime?
- Test for threshold effect: asymmetry?

- Run analysis on sub-periods defined on ZSP mehodology
- Estimate the potential threshold
 - Appreciation vs depreciations? $(\theta = 0)$
 - Normal versus extreme regime?
- Test for threshold effect: asymmetry?
- If asymmetry, compare long-run dynamics: mean reverting or not?


- Run analysis on sub-periods defined on ZSP mehodology
- Estimate the potential threshold
 - Appreciation vs depreciations? $(\theta = 0)$
 - Normal versus extreme regime?
- Test for threshold effect: asymmetry?
- If asymmetry, compare long-run dynamics: mean reverting or not?
- Interpret:
 - Appreciation prevention?
 - Large appreciations prevention?
 - ...

Outline

- 1 The question
- 2 Methodology
- 3 Data
- 4 Results

Exchange rate

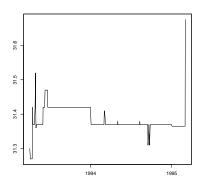
Analysis of sub-periods

Shah and Patnaik (2008): structural breaks in exchange rate management.

Start	End	Peg to	R^2
1993-04-09	1995-03-03	USD	0.98
1995-03-10	1998-08-21	USD	0.72
1998-08-28	2004-03-19	USD	0.97
2004-03-26	2009-08-21	USD, JPY, GBP, EUR	0.69

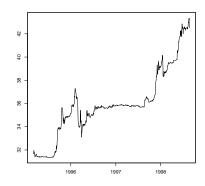
Outline

- The question
- 2 Methodology
- 3 Data
- 4 Results

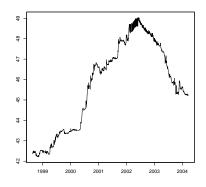

Results

Full sample

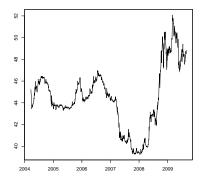
- Threshold effects
- Some evidence of appreciation prevention. But very sensitive


1993-04-09 to 1998-08-21:

- $R^2 = 0.98$, USD
- Only 17 different values with 400 observations
- Unreliable threshold estimate


1993-04-09 to 1998-08-21:

- $R^2 = 0.72$, USD
- Threshold effect: yes, 0.24 (5% > 0.24)
- Partial unit root:
 - Large depreciations: mean reverting
 - Small depreciations and all appreciations: no mean reversion
- ⇒ Prevention of large depreciations


From 1998-08-28 to 2004-03-19:

- $R^2 = 0.97$, USD
- Threshold effect: yes, 0.1~(6% > 0.1)
- Unit root: both regimes fluctuated randomly

From 2004-03-26 to 2009-05-29:

- $R^2 = 0.75$, USD +EU+GBP
- Threshold effect: yes -0.25 (8% < -0.25)
- Partial unit root:
 - Large appreciations: mean reverting
 - Small appreciations and rall depreciations: no mean reversion
- ⇒ Prevention of large appreciations

Summary of the results

- Asymmetries (threshold effects) found in all sub-periods
- Different long-run coefficients in sub-periods with intermediate R^2 only

End	Threshold	Unit roots	R^2
1995-03-03	no	Both stationary	0.98
1998-08-21	0.24	Depreciation prevention	0.72
2004-03-19	0.1	No mean reversion	0.97
2009-08-21	-0.25	Appreciation prevention	0.69
	1995-03-03 1998-08-21 2004-03-19	1995-03-03 no 1998-08-21 0.24 2004-03-19 0.1	1995-03-03 no Both stationary 1998-08-21 0.24 Depreciation prevention 2004-03-19 0.1 No mean reversion

Conclusion

- In intermediate exchange rate regimes, different behaviours are possible:
 - No asymmetry
 - Appreciation prevention
 - Depreciation prevention
- Propose methodology to investigate behaviour of central bank
- Applied to India, find evidence of appreciation and depreciation prevention on different sub-periods
- Methodology works for intermediate regimes, not informative for fixed regimes

Future steps

- M-TAR with three regimes: large appreciations, large depreciations, inaction band.
- Use benchmark model where appreciation prevention is known a priori
- Application to more countries,