The Costs and Benefits of Informalization in a Two-Sector New Keynesian Model

Nicoletta Batini IMF and University of Surrey Paul Levine Emanuela Lotti University of Surrey

September 16, 2009

Informality: Some General Issues

• Lack of consensus on common definition of informality

- definition change by authors, period of time and countries
- all authors agree that in general informality is related to unregistered (and so unobservable) activities;
- Disagreement on the size of the informal sector due to:
 - different definition of informality used (see previous point);
 - lack of robust estimation technique able to capture all the dimensions of the informal economy
 - so, given the limits of current measurement methods, can we measure the size informal economy with a DSGE model?

• Open question addressed in paper: is informality good or bad?

Changes in the Informal economy as a percentage of GDP

	Unweighted Average*			
-	1989-1991	1994/1995	1999-2000	
Africa (24)	33.9	37.4	41.2	
Asia (25)	20.9	23.4	26.3	
C and S America (17)	34.2	37.7	41.5	
Transitional (23)	31.5	34.6	37.9	
OECD (21)	13.2	15.7	16.7	

See [Schneider(2005)]: estimated by DYMIMIC (Dynamic Multiple Indicators, Multiple Causes)

Modelling Informality in a DSGE Context

- Aspects of Informality
 - Goods Market
 - Credit Market
 - Labour Market
- General Equilibrium Analysis: from RBC to NK Models
- Characteristics of the Informal Economy
 - Unregulated and untaxed
 - Low Productivity
 - Hidden or poorly observed
 - Small firms
 - Flexible wages (no frictions)
 - · Credit Constrained, low income households
- Treatment of Agriculture? part of the informal sector, present in both or model a third sector?

A Two-Sector NK Model

- A RBC core with a NK nominal shell (as in all DSGE Models!)
- RBC Core: Supply Side (see [Marjit and Kar(2008)])
 - Classical informal (I) labour market flexible wage
 - Formal Sector: Fixed Real Wage Norm > Real Wage in I sector.
 - Hours are chosen to equate the MRS with the real wage in both sectors
 - Hours higher in the F sector and households prefer employment in the F sector
 - Government spending out of formal output financed by an employment tax in the formal sector only balanced budget
 - Capital mobility and no investment costs
- RBC Core: Demand Side
 - Euler equation \Rightarrow Aggregate Consumption
 - Choice of F and I consumptions depend on relative price

The NK Nominal Shell

- The RBC Core Supply-Side describes the Wholesale Sector
- Introduce **Nominal Price Rigidities** through monopolistic retailers who set Calvo prices
- F and I retailers buy wholesale goods and convert them into differentiated goods sold at a mark-up over the marginal cost= price of the wholesale good.
- Leads to two NK Phillips curves and two price dispersions that lead to welfare costs of inflation
- Monetary Policy conducted in terms of the nominal interest rate

Policy Issues

• Three sources of **welfare costs** of informalization:

(1) Long-term costs of restricting taxes to the formal sector(2) Short-term fluctuation costs of restricting changes in taxes(to finance fluctuations in government spending) to the formal sector and

(3) The costs associated with lack of observability of the informal sector.

• The benefit is wage flexibility

Calibration using the Steady State: Example

A utility function consistent with balanced growth g

$$U_t(C_t,L_{i,t})=rac{[C_t^{1-arrho}L_{i,t}^arrho]^{1-\sigma}-1}{1-\sigma}; \quad \sigma>1$$

Equating the MRS and the real wage in the F-sector:

$$rac{arrho ar{\mathcal{L}}_t}{(1-arrho)(1-h_{ extsf{F}})} = ar{\mathcal{W}}_{ extsf{F},t}$$

Thus if we observe $\frac{\overline{W}_{F,t}}{\overline{C}_{F,t}}$ and h_F we can deduce ρ .

Results of Calibration

- Impose Parameters ('Priors') : $\delta = 0.025, \sigma = 2.0, \xi_F = \xi_I = 0.75$ $\zeta_F = \zeta_I = 7.0, \mu = 1.5$ $\rho_{aF} = \rho_{aI} = \rho_g = \rho_{uI} = \rho_{uF} = 0.7$ $sd(\varepsilon_{aF})=sd(\varepsilon_{aI})=sd(\varepsilon_g)=sd(\varepsilon_{uF})=sd(\varepsilon_{uI}) = 2.0$
- Observe Outcomes:

$$g^{obs} = 0.01, n_F^{obs} = 0.25, h_F^{obs} = 0.5, rel^{obs} = 2.0$$

 $ws_F^{obs} = 0.5, rw^{obs} = 0.4, g_{yF}^{obs} = 0.2, R^{obs} = 0.015$

• Use steady state to deduce:

$$lpha_{I}=$$
 0.80, $lpha_{F}=$ 0.60, $eta=$ 0.998, $w=$ 0.37, $arrho=$ 0.69

Steady State Equilibrium Values: k = 0, 1

Variable	k = 0	k = 1
$\frac{P_F}{P}$	1.00	0.8194
$\frac{P_{I}}{P}$	1.00	1.1333
n _F	0.25	0.3264
h _F	0.5	0.4882
hı	0.25	0.2323
$ au_{F}$	0.50	0.1520
$ au_I$	0.0	0.1520
KYI	5.00	6.9158
KY _F	10.00	10.00
i _{yF}	0.51	0.5470
CyF	0.29	0.2961
Λ	-1.8001	-1.7595 ($c_e = 0.81\%$)

page 10 of 16

The Size of Formal Sector and Tax Burden

Figure: The Size of Formal Sector and Tax Burden: k = Ratio ofInformal-Formal Tax Rates. rw =wage mark-up in the formal sector. page 11 of 16

Welfare and Tax Burden

Figure: Welfare and Tax Burden: k = Ratio of Informal-Formal Tax Rates. rw =wage mark-up in the formal sector. page 12 of 16

Inflation Targeting Rules

• Symmetrical Rule

$$r_{n,t} = \rho r_{n,t-1} + \theta_{\pi} \pi_t + \theta_{Fy} (y_{F,t} - y_{F,t}^*) + \theta_{Iy} (y_{I,t} - y_{I,t}^*)$$

• Asymmetrical Rule. If the informal sector is largely unobserved directly this will be impossible to implement. We therefore treat the symmetrical rule as a benchmark and compare it with an asymmetrical rule that responds only to changes in the observable formal sector

$$r_{n,t} = r_{n,t} = \rho r_{n,t-1} + \theta_{F\pi} \pi_{F,t} + \theta_{y} (y_{F,t} - y_{F,t}^{*})$$

Optimal Rules

n _F	Rule	$[\rho, \ \theta_{\pi F}, \ \theta_{\pi I}, \ \theta_{yF}, \ \theta_{yI}]$	Ω0	σ_r^2	Ce
0.25	Sym	[0.98,0.00,0.05,0.00,0.00]	30.96	0.029	0.20
0.25	Asy	[1.00, 0.01, 0, 0.02, 0]	31.61	0.011	0.20
0.25	Opt	complex	25.08	0.095	0.13
0.36	Sym	[1.00, 0.02, 1.38, 0.06, 0.05]	39.31	0.055	0.27
0.36	Asym	[0.91, 0.30, 0, 0.02, 0]	46.30	0.110	0.34
0.36	Opt	complex	12.00	0.037	0

Table 3. Optimal Rules

The Cost (and Benefit) of Informalization

Source of Cost	Consumption Equiv c_e (%)		
Tax Smoothing at Steady State	0.81		
Stabilization: Optimal Rule	0.13		
Stabilization: Symmetric Taylor Rule	-0.07		
Stabilization: Asymmetric Taylor Rule	-0.14		

Table 4. The Cost (and Benefit) of Informalization.

How big do shocks need to be for Benefit > Cost? Let sd of shocks (2%) be scaled by a factor κ . Then stabilization gains from informalization with an asymmetric Taylor rule will outweigh the tax smoothing at the steady state iff $0.14\kappa^2 > 0.81$ which occurs iff $\kappa > 2.41$; i.e., sd > 4.82%.

page 15 of 16

Conclusion and Future Directions

- Conclude that Informalization seems to be a bad thing. But there are caveats:
- The model ignores investment costs so that capital changes instantly
- The model assumes a balanced budget constraint which therefore exaggerates the costs of distortionary taxes
- We have used a 'small distortions' quadratic approximation to the utility
- The RE solution assumes full information imperfect information is appropriate
- Informal Credit in important in India and Pakistan

Marjit, S. and Kar, S. (2008).

A Contemporary Perspective on the Informal Labor Market -Theory, Policy and the Indian Experience.

Mimeo, Centre for Studies in Social Science, Calcutta.

Schneider, F. (2005).

Shadow Economies around the World: What Do We Really Know?

European Journal of Political Economy, **21**(3), 598–642.