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Abstract:

The paper estimate 1-day Value at Risk (VaR) taking into consideration the financial 

integration of Indian capital market (BSE-SENSEX and NSE-NIFTY) with other global 

indicators and its own volatility using daily returns covering the period January 2003 

to December  2009.  The paper  specifies  a  generalized  autoregressive  conditional 

heteroscedasticity  (GARCH)  framework  to  model  the  phenomena  of  volatility 

clustering on returns and examines the usefulness of considering lag values of return 

on (S&P 500, INR-EURO & INR-USD exchange rate, Gold price) as proxies to global 

financial  condition  in  the  specification  of  the  mean  equation. In  general  VaR  is 

calculated  either  based  on  Historical  Simulation  (HS)  approach  which  imposes 

practically  no  structure  on  the  distribution  of  returns  except  stationarity  or  using 

Monte  Carlo  simulation  (MCS)  approach  which  assumes  parametric  models  for 

variance  and  subsequently  large  number  of  random numbers  is  drawn  from this 

specific  distribution  to  calculate  the  desired  risk  measure.  Filtered  Historical 

Simulation  (FHS)  approach  attempts  to  combine  the  best  of  the  model-based 

approach with the best of the model-free approaches in a very intuitive fashion. The 

paper estimates VaR of return in the Indian capital market based on two composite 

methods i.e. (a) using univariate GARCH model where in the mean equation we have 

used lag values of return on S&P 500, INR-EURO & INR-USD exchange rate and 

Gold  price;  and  following  FHS  approach;  (b)  using  ARMA  for  mean  equation, 

GARCH  for  volatility  and  FHS  for  VaR  estimation  i.e.  ARMA-GARCH-FHS.  The 

performances of the VaR estimates from both the methods were compared and it 

was found that VaR of return in the Indian capital market estimated based on method 

(a)  i.e.  GARCH with  suitable  mean specification  outperforms method  (b)  i.e.  the 

ARMA-GARCH method.
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Estimation of Value at Risk for the Indian capital market: Filtered Historical 
Simulation approach using GARCH model with suitable mean specification

1. Introduction:

Globalisation and financial  sector reforms in India lead to a greater integration of 

Indian  stock  market  with  the  advanced  economies  also  to  the  exchange  rate 

movements.  According  to  efficient  market  hypothesis,  equity  prices  reflect  all 

available relevant information fully and instantaneously.  Fama (1970), describe three 

forms of market efficiency i.e. weak form, semi-strong form and strong form of market 

efficiency based on the availability of information. Among the three forms of market 

efficiency, most of the studies have attended to the weak form of market efficiency 

which proposes that current stock prices reflect all information contained in the past 

stock  prices.  The weak  form of  market  efficiency hypothesis  has  been tested by 

Fama for  U.S.,  Dryden (1970) for  U.K.,  Andersen and Bollerslev (1997) for  eight 

European  markets,  Conrad  and  Juttner  (1973)  for  Germany,  Jennergren  and 

Korsvold  (1975)  for  Norway  and  Sweden,  Lawrence  (1986)  for  Malaysia  and 

Singapore. These studies provided indecisive results. The developed markets, e.g., 

U.S. as well as some of the European markets were found to be weak form efficient. 

However,  evidence  from emerging  markets  indicated  rejection  of  the  weak  form 

market efficiency hypothesis. Therefore question arises whether the returns in such 

markets is predictable. Apart from the form of efficiency, it is the volatility prevailing in 

the market which influences the return to a large extent. Volatility, which refers to the 

degree of unpredictable change over time and might be measured by the standard 

deviation of a sample, often used to quantify the risk of the instrument of portfolio 

over that time period. Equity return volatility may be defined as the standard deviation 

of  daily  equity returns around the mean value of  the equity return and the stock 

market volatility is the return volatility of the aggregate market portfolio. Engle (1982) 

in  his  seminal  work  introduced  the  concept  of  Autoregressive  Conditional 

Heteroscedasticity (ARCH) which became a very powerful tool in the modelling of 

high frequency financial data in general and stock returns in particular. As compared 

to conventional time series models, ARCH models allow the conditional variances to 

change through time as functions of past errors. One significant improvement was 

introduced by Bollerslev (1986) where the Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) process was presented. Further, many more variation 
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were  introduced  such  as  Integrated  GARCH  (IGARCH)  by  Engle  and  Bollerslev 

(1994)  and  the  exponential  GARCH  (EGARCH)  by  Nelson  (1991)  where  re-

specification of variance equation was studied.

In financial risk management, Value at Risk (VaR) is widely used as the risk measure 

and is  defined as the maximum potential  loss  that  would  be incurred at  a  given 

probability p for a financial instrument or portfolio during a given period of time. In 

general,  VaR is  calculated  either  based  on  Historical  Simulation  (HS)  approach, 

which imposes virtually no structure on the distribution of returns except stationarity, 

or using Monte Carlo simulation (MCS) approach which assumes parametric models 

for variance and subsequently large random numbers are drawn from this specific 

distribution to calculate the desired risk measure. Filtered Historical Simulation (FHS) 

approach attempts to  combine the  best  of  the  model-based with  the  best  of  the 

model-free approaches in a very intuitive fashion.

There are some significant empirical researches on stock return volatility in emerging 

markets like India in recent time. However, there is hardly any study which estimated 

VaR  following  Filtered  Historical  Simulation  approach  using  GARCH  model  with 

suitable  mean  specification,  in  the  context  of  Indian  capital  market.  Pattanaik  & 

Chatterjee  (2000)  used  ARCH/GARCH  models  to  model  the  volatility  in  Indian 

financial market.  Agarwal and Du (2005) using BSE 200 data have found that the 

Indian  stock  market  is  integrated  with  the  matured  markets  of  the  World. 

Chattopadhyay and Behera (2006) examined whether reforms in Indian stock market 

have led to integration with the developed stock markets in the world and suggested 

that  Indian  stock  market  is  not  co-integrated  with  the  developed  market  as  yet 

although some short-term impact does exist. Moreover, the study also does not find 

any causality between the Japanese stock market and Indian stock market.  More 

recently,  Janak Raj and Sarat Dhal (2008) investigated the financial integration of 

India’s stock market with that of global and major regional markets. They have used 

six stock price indices i.e. the 200-scrip index of BSE of India to represent domestic 

market, stock price indices of Singapore and Hong Kong to represent the regional 

markets and three stock price indices of U.S., U.K. and Japan to represent the global 

markets. Based on daily as well as weekly data covering end-March 2003 to end-

January 2008 they found that Indian market’s dependence on global markets, such 

as  U.S.  and  U.K.,  was  substantially  higher  than  on  regional  markets  such  as 
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Singapore and Hong Kong, while Japanese market had weak influence on Indian 

market.

The paper examines the financial integration of Indian capital market (BSE-SENSEX 

and NSE-NIFTY) with other global indicators and its own volatility using daily returns 

covering the period January 2003 to December 2009. The paper specifies a GARCH 

framework to model the phenomena of volatility clustering on returns and examines 

the usefulness of considering lag values of return on (S&P 500, INR-EURO & INR-

USD  exchange  rate,  Gold  price)  as  proxies  to  global  financial  condition  in  the 

specification of the mean equation.  The paper also  estimate VaR of return in the 

Indian  capital  market  based  on  two  composite  methods  i.e.  (a)  using  univariate 

GARCH model where in the mean equation we have used lag values of return on 

(S&P 500,  INR-EURO & INR-USD exchange  rate,  Gold  price)  and  following  the 

filtered historical  simulation  (FHS)  approach (b)  using  ARMA for  mean equation, 

GARCH for volatility and FHS for VaR estimation i.e. ARMA-GARCH-FHS methods; 

and compare the performance of both the VaR estimates.

The rest of the paper is organised as follows. Section 2 describes the portfolio model 

using GARCH specifications,  section 3 describes estimate of  VaR based on HS, 

MCS and FHS. Section 4 describes the data and focuses on VaR calculation and 

summarizing the results. Finally, section 5 concludes.  

2.  The portfolio model
In the financial  literature it  is  well  documented that  variances of  asset  returns,  in 

general, changes over time and GARCH models are popular choice to model these 

changing variances.  Let rt;  t  = 1, …,  T ,  represents the continuously compounded 

rate of returns of a stock price index (for holding the portfolio for one day) at time t. If 

pt is the stock price index then rt= ln(pt)– ln(pt-1), where 'ln' is the natural logarithm 

The model can be written as: 

rt+1=c+ϕ1rt+ ϕ2rt-1+..+ ϕkrt+1-k+ψ1x1,t+1+ ψx2,t+1+..+ ψsxs,t+1+σt+1ηt+1 ;         t=1,2…T 

σ2
t+1= ω+ αResid2

t + βσ2
t                 (1)

where  Residt =( rt  – c - Σϕirt-I  - Σψjxj,t); innovation {ηt} is white noise process, with 

zero mean and unit variance and α+β <1. 
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3.  Value at Risk
Value at Risk is being widely used as measure of market risk of an asset or of a 

portfolio. The Parametric VaR model imposes a strong theoretical assumption on the 

underlying properties of data; frequently Normal Distribution is assumed because it is 

well  described,  can  be  defined  using  only  the  first  two  moments  and  it  can  be 

understood  easily.  Other  probability  distributions  may  be  used,  but  at  a  higher 

computational cost.  However, empirical evidence indicates that asset price changes, 

in  particular  the  daily  price  changes,  most  of  the  time  does  not  follow  Normal 

Distribution. In the presence of excess kurtosis, failure rate increases when the VaR 

is  estimated by the Gaussian distribution.  The  100α%  one day ahead VaR (λα,t) 

defined  as  P[rt<=λα,t  |  rt-1]=  α.  In  general,  VaR  techniques  are  based  on  non-

parametric  or  mixture  of  parametric  and  non-parametric  statistical  methods.  The 

family  of  Historical  Simulation  (HS)  models  is  a  non-parametric  approach.  The 

Filtered Historical Simulation (FHS) as developed by Barone-Adesi et al (1998) and 

Barone-Adesi  et  al  (1999,  2000)  is  mixture  of  parametric  and  non-parametric 

approach. 

3.1. Historical Simulation
Apart from stationarity of the returns, Historical Simulation (HS) does not require any 

statistical assumption in particular to the volatility. In Historical Simulation method we 

consider the availability of a past sequence of daily portfolio returns for m days;  rt 

t=1,2…m.  The  HS  technique  simply  assumes  that  the  distribution  of  tomorrow’s 

portfolio returns, rt+1, is well approximated by the empirical distribution of the past m 

observations—that is,  {rt+1-τ}τ=1..m. In other words, the distribution of  rt+1is captured by 

the histogram of {rt+1-τ}τ=1..m. Thus, we simply sort the returns in {rt+1-τ}τ=1..m in ascending 

order  and  choose  the  VaRp
t+1 to  be  the  number  such  that  only  100p%  of  the 

observations are smaller than the VaRp
t+1. 

3.2 Monte Carlo Simulation (MCS)
MCS can be explained  better  through an example.  Let  us  consider  GARCH(1,1) 

model as defined in equation (1) i.e.

rt+1=c+ϕ1rt+ ϕ2rt-1+..+ ϕkrt+1-k+ψ1x1,t+1+ ψx2,t+1+..+ ψsxs,t+1+σt+1ηt+1 ;         t=1,2…T 

σ2
t+1= ω+ αResid2

t + βσ2
t  

where  Residt =( rt  – c - Σϕirt-I  - Σψjxj,t); innovation {ηt} is white noise process, with 

zero mean and unit variance and α+β <1. Although, in the case of daily asset returns, 
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generally,  ηt does not  follow Normal  Distribution but  since using other probability 

distributions is computational very costly, let us assume ηt follows Normal Distribution 

N(0,1).

Based on the above specified GARCH model, at the end of day ‘t’ we can calculate 

the variance of day ‘t+1’ i.e. σ^2
t+1. 

Let {ηi,1
^;  i=1,2…L)  be a set of  large number of random numbers drawn from the 

standard Normal Distribution N(0,1). From these random numbers {ηi,1; i=1,2…L} we 

can calculate a set of hypothetical returns for day ‘t+1’ as 

r^
i,t+1= c+Σϕirt+1-i+Σψjxt+1-j+σ^

t+1 ηi,1
^ ; i=1,2…L

Resid i,t+1=( r^
i,t+1- c-Σϕirt+1-i-Σψjxt+1-j) 

Given these hypothetical returns (r^
i,t+1) for day 't+1', we can compute the hypothetical 

variances for the ‘t+2’ day as

σ^2
t+2= ω+ αResid2

t+1 + βσ^2
t+1

Similarly,  to estimate the hypothetical return (r^
i,t+2) on day  t  +  2, draw again large 

number of pseudo random numbers from the N(0, 1) distribution i.e. {ηi,2; i=1,2…L} 

r^
i,t+2 =c+Σϕirt+2i+Σψjxt+2j+σ^

t+2ηi,2
^ ; i=1,2…L

Resid i,t+2=( r^
i,t+2 - c-Σϕirt+2-i-Σψjxt+2-j) 

and variance is now updated by

σ^2
t+3= ω+ αResid2

t+2 + βσ^2
t+2

Similarly we can get the hypothetical return of ‘t+k’ day 

r^
i,t+k =c+Σϕi*ri,t+k-1+Σψj*xj,t+k-1+σ^

t+k-1*ηi,k
^ ; i=1,2…L

Therefore, hypothetical K-day return can be written as

r^
i,t+1:t+k =Σk r^

i,t+k ; i=1,2…L

If we collect these L hypothetical K-day returns in a set { r^
i,t+1:t+k; i=1,2…L}, then the 

K-day VaR  can be calculated as the 100p percentile i.e.

VaRp
t+1:t+k = - Percentile{{ r^

i,t+1:t+k; i=1,2…L},100p}

3.3 Filtered Historical Simulation (FHS)
As we have discussed that non-parametric approach such as Historical Simulation 

(HS)  does  not  assume any  statistical  distribution  of  returns,  whereas  parametric 
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approach such as the Monte Carlo simulation (MCS) takes the opposite view and 

assumes parametric  models  for  variance,  correlation  (if  a  disaggregate  model  is 

estimated), and the distribution of standardized returns. Random numbers are then 

drawn from this  distribution  to calculate  the VaR.  Both  of  these extremes in  the 

model-free/model-based spectrum have pros and cons. MCS is good if the assumed 

distribution is fairly accurate in description of reality. HS is sensible as the observed 

data may capture features of the returns distribution that are not captured by any 

standard  parametric  model.  The  FHS  approach  on  the  other  hand  attempts  to 

combine the best of the MCS with the best of the HS.

Let’s  assume we  have estimated a GARCH-type  model  of  our  portfolio  variance 

given in equation (1). Although we are comfortable with our variance model (σ), we 

are not comfortable making a specific distributional assumption about the (η), such 

as a Normal or a t distribution. Instead of that, we might like the past returns data (rt) 

to determine the distribution directly without making further assumptions.

Given a sequence of past returns and estimated GARCH volatility, { rt+1- τ, σ^
t+1- τ  ;            τ 

=1,2…m} and , calculated past standardized returns are given by

η^
t+1- τ = (rt+1- τ –E(rt+1- τ))/ σ^

t+1- τ ; τ =1,2…m

Instead of drawing random η^s from a specific probability distribution as it is done in 

MCS, in FHS method samples are drawn with replacement from { η^t+1- τ; τ =1,2…m}. 

Thereafter, similarly as in section 3.2, we can get the hypothetical return of ‘t+k’ day 

r^
i,t+k =c+Σϕi*ri,t+k-1+Σψj*xj,t+k-1+σ^

t+k-1*η^
i,k ; i=1,2…L.

Therefore, hypothetical K-day return can be written as

r^
i,t+1:t+k =Σk r^

i,t+k ; i=1,2…L

The K-day VaR  can be calculated based on L estimated k-day returns {r^
i,t+1:t+k} as the 

100p percentile i.e.

VaRp
t+1:t+k = - Percentile{{ r^

i,t+1:t+k; i=1,2…L},100p}

4.  Empirical results
In this study, we have used daily data of two stock price indices viz. BSE-SENSEX 

(BSE)  and  NSE-NIFTY  (NSE)  covering  the  period  from  January  2003  to 

December 2009. We have estimated 1-day VaR for the daily returns of two 
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price indices  using univariate GARCH model with proper mean specification and 

following the FHS approach for  VaR estimation.  We have also estimated VaR of 

return using ARMA-GARCH-FHS model and compare the performance of both the 

VaR estimate. We have used daily S&P500 stock price (SP), daily exchange 

rate  of  INR-USD  (usd),  INR-EURO  (euro)  and  also  the  gold  prices  in 

INR/ounce (gold) for the same period as explanatory variable of the mean 

equation of the stock prices return. Unit root test (ADF,PP test) suggest that 

level series of all the six data series are non-stationary, however, continuous 

daily return i.e. log differences of the series (dlbse, dlnse, dlsp, dlusd, dleuro 

and dlgold) are stationary.

4.1. Stylised facts
Continuous  daily  return  (log  difference)  and  kernel  density  of  returns  on  BSE-

SENSEX, NSE-NIFTY, S&P500, INR-USD exchange rate, INR-EURO exchange rate 

and Gold prices for the reference period are given in chart 1 and descriptive statistics 

are given in table 1. There is a clear presence of fat tails in the return distribution of 

all the six data series. 

Chart 1: Plot of daily returns and kernel density of daily returns of six series
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Table 1: Descriptive statistics

 DLNSE DLBSE DLSP DLUSD DLEURO DLGOLD
 Mean 0.000804 0.000849 0.000105 -2.02E-05 0.000134 0.000617
 Median 0.001078 0.001614 0.000799 0 0 0.000865
 Maximum 0.163343 0.1599 0.109572 0.024903 0.0279 0.071278
 Minimum -0.13054 -0.11809 -0.0947 -0.03007 -0.03889 -0.08396
 Std. Dev. 0.017498 0.017166 0.013291 0.003855 0.006085 0.012485
 Skewness -0.31933 -0.11242 -0.23195 -0.02245 -0.14065 -0.30721
 Kurtosis 12.07311 11.0435 15.13967 10.82578 5.58351 6.944578
 Jarque-Bera 6370.147 4985.629 11364.19 4715.852 520.0318 1211.227
 Sum 1.485895 1.569306 0.193701 -0.03735 0.24755 1.126134
 Sum Sq. Dev. 0.56552 0.544288 0.326289 0.027452 0.068397 0.284156
 Observations 1848 1848 1848 1848 1848 1824

4.2  Modelling Volatility
Equation  (2)  and (3)  presents the  estimated portfolio  model  where  lag  values  of 

(dlbse,  dlsp,  dlusd,  dleuro  and  dlgold)  are  used  in  the  mean  equation  of  the 

GARCH(1,1) model of BSE and NSE respectively.

Eq (2):

D(LOG(BSE)) = 0.00152 + 0.32558*D(LOG(SP500(-1))) + 
    (0.00027)       (0.02662)

0.16716*D(LOG(SP500(-2))) + 0.13393*D(LOG(SP500(-3))) + 
(0.026299)                  (0.029617)
0.10005*D(LOG(SP500(-4))) - 0.06044*D(LOG(BSE(-2))) – 
(0.027628) (0.025798)
0.04891*D(LOG(BSE(-3))) + 0.05722*D(LOG(GOLD(-2))) + 
(0.020935)      (0.023705)
0.15824*D(LOG(EURO(-3))) - 0.24620*D(LOG(USD(-3))) + 
(0.053619)      (0.088501)
0.15767*D(LOG(USD(-4)))
(0.084305)

GARCH = 5.049e-06 + 0.1527939*RESID(-1)^2 + 0.83803454*GARCH(-1)
      (5.05E-06)    (0.152794)                     (0.838035)
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Eq  (3):

D(LOG(NSE)) = 0.00134 + 0.32468*D(LOG(SP500(-1))) + 
          (0.000292)      (0.027540)

0.16821*D(LOG(SP500(-2))) + 0.10268*D(LOG(SP500(-3))) – 
                (0.027508)         (0.030620)
0.03877*D(LOG(NSE(-2))) + 0.06159*D(LOG(GOLD(-2))) +
             (0.026039)       (0.025277)
 0.17716*D(LOG(EURO(-3))) - 0.34938*D(LOG(DOLLAR(-3))) + 
            (0.051925)          (0.088119)
0.19060*D(LOG(DOLLAR(-4)))
(0.087568)

GARCH = 5.52699e-06 + 0.13072*RESID(-1)^2 + 0.85739*GARCH(-1)
      (5.53E-06)             (0.130725) (0.857389)

Equation (4) and (5) presents the estimated portfolio model using ARMA-GARCH model of BSE and 
NSE respectively.

Eq (4):

D(LOG(BSE)) = 0.00161 + [AR(1)=0.52534,AR(2)= -0.87026, 
(0.000314)      (0.062328)            (0.061490)    

MA(2)=0.79823,MA(3)=0.12583,MA(1)=-0.42263]
  (0.066763) (0.026230)           (0.066514)

GARCH = 6.28919e-06 + 0.15594*RESID(-1)^2 + 0.83073*GARCH(-1)
      (6.29E-06)                  (0.155941)                  (0.830730)

Eq (5):

D(LOG(NSE)) = 0.00160+ [AR(2)=-0.45572,AR(4)=-0.6135
                           (0.000317)        (0.084090)       (0.096555)                
AR(1)=0.49844,MA(2)=0.42253,MA(4)=0.67288,MA(1)=-0.43386]
     (0.134215)      (0.079148)       (0.092978)          (0.127459)

GARCH = 7.61169e-06 + 0.13774*RESID(-1)^2 + 0.84330*GARCH(-1)
      (1.12E-06) (0.011880)            (0.012652)

*Values given in () are the standard error

4.3  Value at Risk: results
We have estimated 5% 1-day-VaR for  both BSE-SENSEX and NSE-NIFTY daily 

retrn using univariate GARCH model with proper mean specification as estimated in 

section 4.2 and following the FHS approach for VaR estimation (Model A). We have 

also estimated  5% VaR for both BSE-SENSEX and NSE-NIFTY daily return  using 

ARMA-GARCH-FHS model (Model B). To estimate the model parameter we have 

used  the  data  from  2nd January  2003  to  30th October  2009  and  forecasted 

dynamically 1-day VaR for the period 2nd November 2009 to 24th December 2009 i.e. 

for 39 days. Actual returns and forecasted VaR based on both Model A and Model B 

for BSE-SENSE and NSE-NIFTY are given in chart 2 and chart 3, respectively. Out 

of 39 forecasts of VaR for BSE and NSE, only in one occasion actual return was less 

than the VaR estimate (failure rate 1/39) for both model A and model B. However, 

dispersion of VaR from actual returns is not the same.
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Let the dispersion of VaR at 5% significant level based on model A (AVaRt
.05) from the 

actual  return  (rt)  be  DA=Σ(rt
 -  AVaRt

.05)2  and  DB=Σ(rt
 -  BVaRt

.05)2  for  mode  B.  It  is 

observed that (DA
BSE =0.02625, DB

BSE =0.03022), (DA
NSE = 0.02673, DB

NSE =0.03050)

Since DA
BSE < DB

BSE ; DA
NSE <DB

NSE, we conclude that for both BSE-SENSEX and NSE-

NIFTY price indices, model A performs better in estimating the VaR. 

Chart 2: Daily return on BSE and corresponding VaR based on Model A and Model B
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Chart 3:Daily return on NSE and corresponding VaR based on Model A and Model B
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5.  Conclusion

The paper estimate 1-day VaR taking into consideration the financial integration of 

Indian capital market (BSE-SENSEX and NSE-NIFTY) with other global indicators 

and  its  own  volatility  using  daily  return  covering  the  period  January  2003  to 

December 2009. The paper specifies a GARCH framework to model the phenomena 

of  volatility  clustering  on returns  and examines  the usefulness  of  considering  lag 

values of return on (S&P 500, INR-EURO & INR-USD exchange rate, Gold price) as 

proxies to global financial condition  in the specification of the mean equation. The 

paper  estimate  the  VaR  of  return  in  the  Indian  capital  market  based  on  two 

composite  methods  i.e.  (a)  using  univariate  GARCH  model  where  in  the  mean 

equation we have used lag values of return on (S&P 500, INR-EURO & INR-USD 

exchange  rate,  Gold  price)  and  following  the  FHS  approach  (b)  using  ARMA-

GARCH-FHS; and compare the performance of both the VaR estimate. It is found 

that VaR of return in the Indian capital market estimated based on method (a) i.e. 

GARCH with proper mean specification performs better than method; and (b) using 

ARMA for  mean equation,  GARCH for  volatility  and FHS for  VaR estimation  i.e. 

ARMA-GARCH-FHS; and compared the performance of the VaR estimate from both 

the methods. Empirically, it is found that global financial situation (lag values of return 

on S&P 500, INR-EURO & INR-USD exchange rate, Gold price used as proxies to 

global  financial  condition)  has  significant  impact  on  Indian  capital  market.  Also 

estimated VaR of return in the Indian capital market estimated based on GARCH 

method with suitable mean specification outperforms the ARMA-GARCH method.
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