On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Omid M. Ardakani

N. Kundan Kishor

Suyong Song

Department of Economics University of Wisconsin-Milwaukee

March, 2015

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Contex

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Veighting Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・ロト・西ト・山田・山田・山口・

 Inflation targeting (IT) has become one of the most important monetary policy strategies. On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT

Treatment Effects of IT Logit π̂(X_i)

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・ロト・日本・日本・日本・日本・日本

- Inflation targeting (IT) has become one of the most important monetary policy strategies.
- What is Inflation Targeting?

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT

reatment Effects of II .ogit $\hat{\pi}(X_i)$

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$

Concluding Remarks

・ロト・日本・日本・日本・日本・日本

- Inflation targeting (IT) has become one of the most important monetary policy strategies.
- What is Inflation Targeting?
 - The public announcement of the target
 - Achieving the target over a medium to long horizon

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT

Weighting Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$

Concluding Remarks

・ロト・日本・山田・山田・

- Inflation targeting (IT) has become one of the most important monetary policy strategies.
- What is Inflation Targeting?
 - The public announcement of the target
 - Achieving the target over a medium to long horizon
- The Reserve Bank of New Zealand initiated inflation targeting in 1990.
- Another example of explicit inflation targeting is the United Kingdom.
- Federal Reserve's implicit commitment to inflation targeting.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・ロト・日本・山田・山田・

- 27 explicit inflation targeting countries in the world.
- Anchor inflationary expectations
- Build central banks credibility
- Avoid business cycle fluctuations
- Increase transparency

IT Goals

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Annual inflation rates and targets

(a) United Kingdom

(b) Canada

(d) China

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Dataset

The Impact of IT Treatment Effects of IT

Weighting Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・ロト・西ト・ヨト・ヨー もくの

Relevant literature

• The effectiveness of inflation targeting Causal effect of Inflation Targeting

1. The IT regime is successful

 (Mishkin and Schmidt-Hebbel (2001), Rose (2007), Filho (2011), Lucotte (2010))

2. IT has no effect on the economy

 (Johnson (2002), Ball and Sheridan (2003), Lin and Ye (2007)) On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・ロト・日本・山田・山田・

• Self-selection problem

Targeters and non-targeters are different.

Central banks' decision to adopt inflation targeting is related to the benefits from the adoption of IT.

The difference between targeters and non-targeters is due to *selection* and not due to the IT regime.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT

Weighting Nonparametric $\hat{\pi}(X_i)$ Seminarametric $\hat{\pi}(X_i)$

Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

• Self-selection problem

Targeters and non-targeters are different.

Central banks' decision to adopt inflation targeting is related to the benefits from the adoption of IT.

The difference between targeters and non-targeters is due to *selection* and not due to the IT regime.

- Random assignment solves the selection problem.
- Effectiveness can be estimated using simple means between countries.
- Treatment effect: the terminology comes from medicine
- Randomization is **not feasible** in our case.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Seminarametric Results

- Two sets of countries are different.
- It is difficult to compare them.
- One solution is propensity score analysis

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・ロト・西ト・ヨト ・日・ うへぐ

- Two sets of countries are different.
- It is difficult to compare them.
- One solution is propensity score analysis
- Propensity score is the probability of adopting IT.
- Propensity score is a scalar variable.
- We can find countries with similar propensity score.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・ロト・西ト・西ト・西ト・日・ シック

• Stages in propensity score analysis

- 1. Estimating propensity score
 - We model the probability of IT using covariates.
- 2. Finding the effect of IT

We compare the difference between matches on the outcome measure of interest.

- What is a **model**? Can we trust our model?
- What if the model is wrong. (Model Misspecification)
- Misspecified propensity score in the first stage leads us to inconsistent results in the second stage.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Contribution

- 1. Estimate the effectiveness of IT taking into account the "model misspecification"
 - Nonparametric series propensity score

Overcoming problems with nonparametric estimation.

- Proposing semiparametric single index propensity score
- In the first stage we consider the role of preconditions (financial development indicators) along with macroeconomic predictors (such as openness and money growth).
- 3. Examine the effectiveness of IT on inflation, inflation variability, fiscal discipline, sacrifice ratio, exchange rate volatility and interest rate variability.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Theoretical framework

- Transparency increases the effectiveness of monetary policy (Svensson (1999) and Woodford (2005)).
- The effectiveness of IT is considered through **aggregate demand** channel and **inflation expectation** channel.

Monetary policy \rightarrow aggregate demand \rightarrow inflation

Monetary policy \rightarrow inflation expectations \rightarrow inflation

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

The empirical setup

- Consists of 98 countries from 1990 to 2013.
- Includes 27 targeters and 71 non-targeters.
- We impute missing data.
- Divide it into developing and developed countries.
- First stage estimation:
 - Response: the targeting dummy
 - ▶ Covariates: π_{t-1} , M_g , GDP_g , Openness, CBA, and PC
- Second stage estimation:
 - Outcomes: π , debt, SR, σ_{π} , σ_i , σ_s

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・ロト・西ト・山田・山田・山口・

Macroeconomic outcomes

- Volatilities are measured by the standard deviation of a three-year moving average.
- Interest rates are 10-year government bond rates.
- **Fiscal discipline** is proxied by the inverse of government debt-GDP ratio.
- **Sacrifice ratio** is measured by the ratio of the change in output growth to the change in inflation.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Dataset

The Impact of IT Treatment Effects of IT

Weighting Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・ロト・日本・山田・山田・

- To estimate the effects of inflation targeting on macroeconomic performance, we estimate the average treatment effect on the treated.
- Inflation targeting selection is a process that permits central banks to adopt IT if they meet economic and institutional preconditions.
- One way of estimating *ATT* to overcome self-selection is **Propensity Score Analysis**.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Context

Dataset

The Impact of IT

Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・ロト・日本・山田・山田・

Propensity Score Analysis

- Propensity Score Analysis used to estimate causal effects in observational studies.
- We define a model to estimate propensity score.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Dataset

The Impact of IT

Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Propensity Score Analysis

- Propensity Score Analysis used to estimate causal effects in observational studies.
- We define a model to estimate propensity score.
- Match targeters to non-targeters based on the estimated propensity scores.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Contex

Dataset

The Impact of IT

Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・ロト ・ 四ト ・ ヨト ・ ヨト ・ りへぐ

Propensity Score Analysis

- Propensity Score Analysis used to estimate causal effects in observational studies.
- We define a model to estimate propensity score.
- Match targeters to non-targeters based on the estimated propensity scores.
- Use propensity scores as weights to find the effectiveness.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Dataset

The Impact of IT

Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・ロト・日本・山田・山田・

First stage estimation results

	FULL	IND	DCS
	(1)	(2)	(3)
GDP Growth	-0.0801***	-0.0976**	-0.0653***
	(0.0129)	(0.0339)	(0.0136)
Money Growth	0.0001^{*} (0.0000)	0.0015^{**} (0.0005)	0.0001^{*} (0.0000)
Lagged Inflation	-0.0007	-0.0075	0.0009
	(0.0016)	(0.0167)	(0.0016)
Openness	-0.0114***	-0.0112***	-0.0096***
	(0.0008)	(0.0013)	(0.0011)
Credit Deposit	0.0083***	0.0015	0.0048 ^{***}
	(0.0007)	(0.0013)	(0.0010)
CB Assets	0.0016	-0.0311**	0.0056*
	(0.0022)	(0.0102)	(0.0023)

Dependent variable is the targeting dummy.

*p<0.1; **p<0.05; ***p<0.01.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Theoretical Context Dataset The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

First stage estimation results

- 1. More developed economies are less likely to adopt IT.
- 2. The real money growth is positively associated with the probability of adopting IT (inflationary pressure).
- A higher degree of openness lowers the probability of adopting IT (Romer (1993)).
- Preconditions play a crucial role, especially in emerging market economies.
- 5. Higher private credit-GDP ratio (financial depth) increases the probability of adopting IT in DCS.
- 6. Higher size of central banks' balance sheets increases the probability of the IT adoption in DCS.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting Nonparametric $\hat{\pi}(X_i)$

Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Propensity Score Weighting

- Propensity scores may be used without matching.
- Inverse probability of adopting IT as a weight.
- Perform a weighted outcome analysis.
- Take a differential amount of information from each country.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Contex

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・ロト・西ト・山田・山田・山口・

Propensity Score Weighting

- Propensity scores may be used without matching.
- Inverse probability of adopting IT as a weight.
- Perform a weighted outcome analysis.
- Take a differential amount of information from each country.
 Benefits:
 - Enhance internal validity rather than external validity.
 - Outcome shouldn't be continuous or normally distributed.
 - Retain most countries in the outcome analysis.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Contex

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Table: Average treatment on the treated using propensity score weighting, logit estimate

	π	debt	SR	σ_{π}	σ_i	σ_s
FULL	-1.05**	-19.03***	-0.2	-1.81***	-0.66***	-1.41***
	(0.53)	(1.76)	(0.13)	(0.52)	(0.25)	(0.50)
IND	0.02	-29.34***	-0.45	-0.16	-0.09	2.25***
	(0.17)	(3.04)	(0.33)	(0.14)	(0.17)	(0.50)
DCS	-1.12	-13.28***	-0.07	-2.19***	-0.29	-1.76**
	(0.80)	(2.01)	(0.13)	(0.70)	(0.36)	(0.69)

p < 0.1; p < 0.05; p < 0.01.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT

Weighting

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Nonparametric Propensity Scores

- Results are sensitive to the specification.
- We estimate the causal effect by weighting the inverse of a nonparametric estimate of the propensity score.
- The model and the distribution of error terms are unknown.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting Nonparametric $\hat{\pi}(X_i)$

Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Nonparametric Propensity Scores

- Results are sensitive to the specification.
- We estimate the causal effect by weighting the inverse of a nonparametric estimate of the propensity score.
- The model and the distribution of error terms are unknown.

A problem with this estimate is the "curse of dimensionality"

In higher dimensions the observations are sparsely distributed.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$

Concluding Remarks

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

	π	debt	SR	σ_{π}	σ_i	σ_s
FULL	-0.92	-17.78***	-0.32**	-0.88**	-0.55**	-0.87*
	(0.64)	(1.80)	(0.13)	(0.38)	(0.25)	(0.51)
IND	0.03	-26.72***	-0.77**	-0.22	-0.03	2.13***
	(0.19)	(2.75)	(0.33)	(0.18)	(0.18)	(0.48)
DCS	-0.95	-12.64***	-0.14	-0.99*	-0.25	-1.18
	(0.98)	(2.18)	(0.14)	(0.57)	(0.36)	(0.72)

Table 10: Average treatment on the treated using propensity score weighting, nonparametric estimate

^a Outcomes are inflation (π), government debt-GDP ratio (*debt*), sacrifice ratio (*SR*), inflation variability (σ_{π}), interest rate volatility (σ_i), and exchange rate volatility (σ_s).

^b FULL: full sample, IND: industrial economies, DCS: developing countries.
^c *p<0.1; **p<0.05; ***p<0.01.

	Predic	cted			Predic	
Actual	0	1	Actua	al _	0	
0	1615	89	0		1698	
1	572	76	1		584	
(a) Logit Model		el	(b) Sin	gle I	Index N	\

Table 11: Confusion matrices for the full sample

The diagonal elements contain correctly predicted outcomes, while the off-diagonal ones contain incorrectly predicted (confused) outcomes.

• To break the curse of dimensionality, we use the semiparametric single index model.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT

Weighting Nonparametric $\hat{\pi}(X_i)$

Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

うしん 同一人用 人用 人名 マート

- To break the curse of dimensionality, we use the semiparametric single index model.
- $T = g(X'\beta_0) + u$, where T is the targeting dummy.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Contex

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting Nonparametric $\hat{\pi}(X_i)$

Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• To break the curse of dimensionality, we use the semiparametric single index model.

• $T = g(X'\beta_0) + u$, where T is the targeting dummy.

If the dependent variable *T* is binary, Klein and Spady (1993) propose a technique for estimating β.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$

Concluding Remarks

・ロト ・ 四ト ・ ヨト ・ ヨト ・ りへぐ

• To break the curse of dimensionality, we use the semiparametric single index model.

• $T = g(X'\beta_0) + u$, where T is the targeting dummy.

- If the dependent variable *T* is binary, Klein and Spady (1993) propose a technique for estimating β.
- $x'\beta$ is scalar single index.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$

Concluding

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

- To break the curse of dimensionality, we use the semiparametric single index model.
- $T = g(X'\beta_0) + u$, where T is the targeting dummy.
- If the dependent variable *T* is binary, Klein and Spady (1993) propose a technique for estimating β.
- $x'\beta$ is scalar single index.
- The nonparametric part is the unknown function $g(\cdot)$.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$

Concluding Remarks

・ロト・日本・山田・山田・

- To break the curse of dimensionality, we use the semiparametric single index model.
- $T = g(X'\beta_0) + u$, where T is the targeting dummy.
- If the dependent variable *T* is binary, Klein and Spady (1993) propose a technique for estimating β.
- $x'\beta$ is scalar single index.
- The nonparametric part is the unknown function $g(\cdot)$.
- Give us estimates of values no matter what probability distribution the errors have.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$

Table: Average treatment on the treated using propensity score weighting, semiparametric single index estimate

	π	debt	SR	σ_{π}	σ_i	σ_s
FULL	-0.3	-15.55***	-0.17	-0.99***	-0.17	-1.82***
	(0.44)	(1.75)	(0.13)	(0.33)	(0.27)	(0.48)
IND	-0.02	-31.18 ^{***}	-0.13	-0.38**	0.12	2.27 ^{***}
	(0.26)	(3.32)	(0.34)	(0.18)	(0.18)	(0.43)
DCS	-0.02	-9.64***	-0.14	-1.04**	0.27	-2.39***
	(0.65)	(2.09)	(0.13)	(0.50)	(0.37)	(0.65)
* •						

p<0.1; *p<0.05; ***p<0.01.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview

Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT

Weighting Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- 1. IT significantly improves fiscal discipline (as a sign of their commitment to price stability).
 - This reduction is larger in industrial countries.
- 2. Our finding show that IT significantly reduces inflation variability.
 - the impact of IT is less in industrial economies than developing countries.
- 3. IT has a significant effect on exchange variability.
 - significantly reduces exchange rate volatility in developing countries but increases it in industrial economies.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

- 1. The choice of propensity scores especially single index model has a considerable impact on the treatment effect estimates.
- Within the framework of a semiparametric single index model, the impact of inflation targeting is larger and more significant.
- The single index coefficient regression model in conjunction with the proposed estimation method could be useful in propensity score analysis.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Contex

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Weighting Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results

Concluding Remarks

・ロト・西ト・市・ 市・ うらう

Conclusion

- Our findings based on the semiparametric estimate show that IT significantly reduces inflation variability and this reduction is larger in developing countries.
- We examine that the inflation targeting regime significantly reduces the exchange rate volatility in developing countries. However, industrial economies experienced a higher exchange rate variability after the adoption of IT.
- We show that the choice of propensity scores has a considerable impact on the treatment effect estimates. Consequently, a semiparametric single index estimate of propensity scores provides the most meaningful results.

On the Effectiveness of Inflation Targeting: Evidence from Semi/nonparametric Approach

Overview Theoretical Context

Dataset

The Impact of IT Treatment Effects of IT Logit $\hat{\pi}(X_i)$

Nonparametric $\hat{\pi}(X_i)$ Semiparametric $\hat{\pi}(X_i)$ Semiparametric Results