Outbound FDI by software companies

Rudrani Bhattacharya, Ila Patnaik and Ajay Shah National Institute of Public Finance and Policy, New Delhi

September 16, 2009

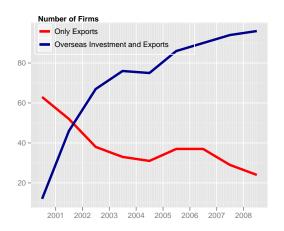
Part I

Trade, FDI and international business organization of firms

New trade theory

- Exporting firms and firms engaged in outbound FDI are not a random sample of the population of firms in an industry
- Firm specific characteristics define how firms choose to serve foreign customers
- Productivity differences across firms is seen to be a key determinant

Intuition behind New trade theory


Why do some firms export and others undertake Outbound FDI?

- Firms self-select on the basis of:
 - differences in cost in serving domestic and foreign markets
 - differences in transport costs and set-up costs
- Least productive firms serve the domestic markets, more productive firms undertake exports and the most productive firms engage in outbound FDI.

Indian Software Services Industry

- Long had strong export orientation
- Strict capital controls till 1999 did not allow for outbound FDI
- Soon after lifting restrictions, a sharp jump in outbound FDI can be witnessed
- This episode in India is a natural experiment because of the sudden relaxation of capital controls

Firms engaging in outbound FDI overtime

Software Services Industry

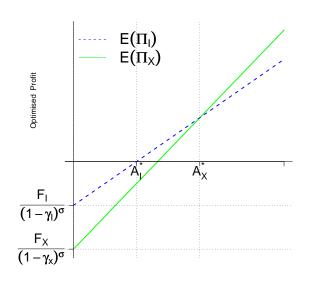
- Unique features:
 - Near-zero transport costs ==> Discourages outbound FDI
 - Non-commoditised nature of software services ==> encourages outbound FDI
- Need for a model to understand firm behaviour in software services industry

Model

- Consumer's perceived risk about quality of service exported is higher than for service bought from foreign firm situated at home (Lee and Tan, 2003)
- Demand faced by firm

$$q(i) = \begin{cases} 0 & \text{with prob} \quad \gamma_j \\ Dp(i)^{-\sigma}, \sigma = 1/(1 - \epsilon) > 1 & \text{with prob} \quad 1 - \gamma_j \end{cases} \quad j = X, I$$

- \bullet $\gamma_X > \gamma_I$
- No transport cost
- demand realized after production
- $F_X < F_I$ as in HMY


Model

- Risk neutral firm maximises expected profit
- Cut-off productivity level such that export and FDI firms just break even

$$A_X^{*\sigma-1} = \frac{F_X(\sigma-1)(\frac{\sigma}{\sigma-1})^{\sigma}}{D(1-\gamma_X)^{\sigma}}, \quad A_I^{*\sigma-1} = \frac{F_I(\sigma-1)(\frac{\sigma}{\sigma-1})^{\sigma}}{D(1-\gamma_I)^{\sigma}}$$

 Since exporters face greater risk compared to FDI firms, threshold productivity of exporters to break even is higher than FDI firms

Productivity ranking of export and FDI firms

Firm Productivity

Implications

- Less productive firms choose to undertake outbound FDI
- More productive firms remain as exporters

This goes against the HMY Hypothesis

Testing our Hypothesis

- Need for productivity estimation
- Several methods have been proposed to estimate productivity
- No one method is perfect
- We estimate:
 - Efficiency effect Stochastic Frontier Analysis
 - Fixed effect dummy regression Analysis
 - Time variant Stochastic Frontier Analysis

Data

- Firm level data on software industry from CMIE (Prowess)
- Break sample into two time ranges
 - 2000-2008:9 years of data
 - 2000-2002: 3 years of data

Result of efficiency effect SFA

Estimate	Standard error
0.73033646***	0.084
0.24184873***	14.89
0.00031834	0.0004
0.72458337***	0.021
0.00432048	0.003
-0.41695749*	0.193
1.46623764***	0.131
0.85717722***	0.026
	0.73033646*** 0.24184873*** 0.00031834 0.72458337*** 0.00432048 -0.41695749* 1.46623764***

Figure: Technical efficiency difference between DX and DXI firms in 2000

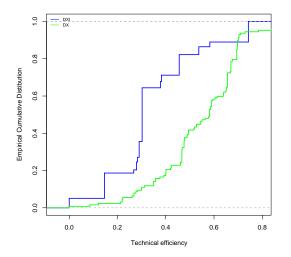


Figure: Technical efficiency difference between DX and DXI firms in 2001

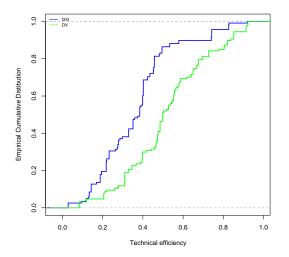
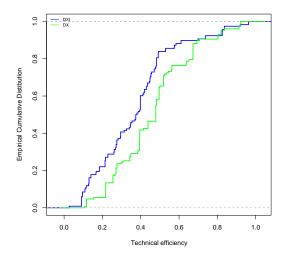



Figure: Technical efficiency difference between DX and DXI firms in 2002

Fixed effects dummy regression

- Coefficient of outbound FDI dummy in fixed effects regression model is -0.3724 with a standard error of 0.1716
- Efficiency effect SFA results for a truncated sample of three years also gives similar result, although outbound FDI dummy is not significant
- Fixed effect regression model for both large sample and truncated sample support our hypothesis

Results - Summary

Result
Yes
Yes
Yes

Method (Shorter Sample)	Result
Efficiency effect Stochastic Frontier Analysis	Not clear
Time variant Stochastic Frontier Analysis	Yes
Fixed effect dummy regression	Yes

Exporting firms are more productive than firms participating in outbound FDI

Thank you