One way bets on pegged exchange rates

Ila Patnaik Ajay Shah

September 29, 2008
Evolution of the Indian exchange rate regime

Structural break dates identified using Zeileis, Patnaik, Shah:

<table>
<thead>
<tr>
<th>Dates</th>
<th>INR/USD Weekly vol.</th>
<th>Reserves addition (Bln. USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993-04 - 1995-02</td>
<td>0.16</td>
<td>13.03</td>
</tr>
<tr>
<td>1995-02 - 1998-08</td>
<td>0.93</td>
<td>4.86</td>
</tr>
<tr>
<td>1998-08 - 2004-03</td>
<td>0.29</td>
<td>82.64</td>
</tr>
<tr>
<td>2004-03 - 2008-02</td>
<td>0.63</td>
<td>178.23</td>
</tr>
</tbody>
</table>
The hypothesis

- Pegged exchange rate
 - Low exchange rate volatility
 - Sustained large scale purchases by the central bank
 - Large reserves assure large depreciations will not take place.

- What is a rational CEO to think?

A fair chance of appreciation; a low probability of depreciation; a certainty that large depreciations will not take place.

A one way bet.

Firms will modify their exchange rate exposure so as to profit from this exchange rate outlook.
The hypothesis

- Pegged exchange rate
 - Low exchange rate volatility
 - Sustained large scale purchases by the central bank
 - Large reserves assure large depreciations will not take place.

- What is a rational CEO to think?
 - A fair chance of appreciation; a low probability of depreciation; a certainty that large depreciations will not take place.

- A one way bet.
The hypothesis

- Pegged exchange rate
 Low exchange rate volatility
 Sustained large scale purchases by the central bank
 Large reserves assure large depreciations will not take place.

- What is a rational CEO to think?

- A fair chance of appreciation; a low probability of depreciation; a certainty that large depreciations will not take place.

- A one way bet.

- Firms will modify their exchange rate exposure so as to profit from this exchange rate outlook.
Measurement of exchange rate exposure

- Accounting data is not useful.
- Stock returns r_j, broad market index r_{M1}, exchange rate r_{M2}, a model:
 \[r_j = \alpha + \beta_1 r_{M1} + \beta_2 r_{M2} + \epsilon \]
- β_2: Rise in stock price for a 1% currency depreciation.
- Nominal INR/USD appropriate given dollar pegging, and the statistical efficiency gained by using high-frequency data.
The challenge of estimating β_2

- Lack of statistical precision in an emerging markets setting, where unsystematic risk is high and exchange rate flexibility is low.
The challenge of estimating β_2

- Lack of statistical precision in an emerging markets setting, where unsystematic risk is high and exchange rate flexibility is low
- Change in behaviour across changes in the exchange rate regime
The challenge of estimating β_2

- Lack of statistical precision in an emerging markets setting, where unsystematic risk is high and exchange rate flexibility is low
- Change in behaviour across changes in the exchange rate regime
- Lags in response
The challenge of estimating β_2

- Lack of statistical precision in an emerging markets setting, where unsystematic risk is high and exchange rate flexibility is low
- Change in behaviour across changes in the exchange rate regime
- Lags in response
- Forecastability of the exchange rate given pegging.
The challenge of estimating β_2

- Lack of statistical precision in an emerging markets setting, where unsystematic risk is high and exchange rate flexibility is low
- Change in behaviour across changes in the exchange rate regime
- Lags in response
- Forecastability of the exchange rate given pegging.
- If a one-way bet *is* present, exchange rate exposure is in the market index!
 We will end up reading how $\hat{\beta}_2$ differs from the average exposure of the index.
Lack of statistical precision in an emerging markets setting, where unsystematic risk is high and exchange rate flexibility is low
Change in behaviour across changes in the exchange rate regime
Lags in response
Forecastability of the exchange rate given pegging.
If a one-way bet is present, exchange rate exposure is in the market index!
We will end up reading how $\hat{\beta}_2$ differs from the average exposure of the index.
Heteroscedasticity.
Our estimation strategy

1. Work within sub-periods of exchange rate regime
2. Switch from r_{M2} to ARMA innovations
3. Purge exchange rate exposure from the market index series.
4. SBC-minimising lag structure and HAC standard errors.
5. Use daily data in order to maximise statistical precision.
6. Obtain statistical precision by focusing on industry indexes and not individual stocks:
 1. Reduction of unsystematic risk and thus improvement in precision of estimating β_{M2}
 2. If and only if a one-way bet is present, exchange rate views of multiple firms in an industry will be homogeneous
By and large, in the literature, exchange rate exposure is generally not found either with stocks or with industry indexes. We conjecture it is because:

- With floating exchange rates, there is no one way bet
- Difficulties of measurement.
Difficulties of measurement: an example

- As an example, focus on just the 11 top level indexes
- Start from a naive measurement strategy
- One by one, introduce elements of sophisticated measurement
- Picture comes into focus.
I. Weekly data, no structural breaks

<table>
<thead>
<tr>
<th>t statistic of β_2</th>
<th>Number of industry indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \leq -1.96$</td>
<td>P1: 0, P2: 0, P3: 11, P4: 0</td>
</tr>
<tr>
<td>$-1.96 < t \leq 1.96$</td>
<td></td>
</tr>
<tr>
<td>$1.96 < t$</td>
<td></td>
</tr>
</tbody>
</table>
II. Weekly data, **structural breaks**

<table>
<thead>
<tr>
<th>t statistic of β_2</th>
<th>Number of industry indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \leq -1.96$</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>$-1.96 < t \leq 1.96$</td>
<td>9 11 11 11</td>
</tr>
<tr>
<td>$1.96 < t$</td>
<td>2 0 0 0</td>
</tr>
</tbody>
</table>
III. Weekly data, structural breaks, purge r_{M1}

<table>
<thead>
<tr>
<th>t statistic of β_2</th>
<th>Number of industry indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \leq -1.96$</td>
<td>0 1 7 4</td>
</tr>
<tr>
<td>$-1.96 < t \leq 1.96$</td>
<td>8 10 4 7</td>
</tr>
<tr>
<td>$1.96 < t$</td>
<td>3 0 0 0</td>
</tr>
</tbody>
</table>
V. Daily data, structural breaks, purge r_{M1}, currency innovations

<table>
<thead>
<tr>
<th>t statistic of β_2</th>
<th>Number of industry indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \leq -1.96$</td>
<td>0, 6, 10, 10</td>
</tr>
<tr>
<td>$-1.96 < t \leq 1.96$</td>
<td>3, 5, 1, 1</td>
</tr>
<tr>
<td>$1.96 < t$</td>
<td>8, 0, 0, 0</td>
</tr>
</tbody>
</table>
Exchange rate exposure of Nifty

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same day</td>
<td>0.538</td>
<td>-0.283</td>
<td>-1.204</td>
<td>-1.249</td>
</tr>
<tr>
<td></td>
<td>(0.8)</td>
<td>(-2.4)</td>
<td>(-4.0)</td>
<td>(-8.1)</td>
</tr>
<tr>
<td>Lag 1</td>
<td>1.060</td>
<td>-0.055</td>
<td>-0.603</td>
<td>-0.398</td>
</tr>
<tr>
<td></td>
<td>(1.6)</td>
<td>(-0.5)</td>
<td>(-2.0)</td>
<td>(-2.6)</td>
</tr>
<tr>
<td>Lag 2</td>
<td>0.877</td>
<td>0.092</td>
<td>0.002</td>
<td>-0.267</td>
</tr>
<tr>
<td></td>
<td>(1.3)</td>
<td>(0.8)</td>
<td>(0.0)</td>
<td>(-1.7)</td>
</tr>
<tr>
<td>Lag 3</td>
<td>-0.287</td>
<td>0.180</td>
<td>-0.342</td>
<td>0.173</td>
</tr>
<tr>
<td></td>
<td>(-0.4)</td>
<td>(1.5)</td>
<td>(-1.1)</td>
<td>(1.1)</td>
</tr>
<tr>
<td>Lag 4</td>
<td>0.656</td>
<td>0.124</td>
<td>0.431</td>
<td>-0.251</td>
</tr>
<tr>
<td></td>
<td>(0.9)</td>
<td>(1.0)</td>
<td>(1.4)</td>
<td>(-1.6)</td>
</tr>
<tr>
<td>Lag 5</td>
<td>1.008</td>
<td>-0.029</td>
<td>0.455</td>
<td>-0.119</td>
</tr>
<tr>
<td></td>
<td>(1.6)</td>
<td>(-0.2)</td>
<td>(1.5)</td>
<td>(-0.8)</td>
</tr>
<tr>
<td>\bar{R}^2</td>
<td>0.005</td>
<td>0.005</td>
<td>0.015</td>
<td>0.073</td>
</tr>
</tbody>
</table>
Family of industry indexes maintained by CMIE
At the top level, broad industry groups
A tree of indexes
We focus on the leaf nodes
Within each of these narrow industry indexes, natural economic exposure is homogeneous.
126 such industry indexes.
Many exporting industries - which should ordinarily gain from depreciation - moved around in this table through time and managed to obtain the opposite exposure.
Robustness checks

- Choice of market index
- Choice of return interval
- Alternative definition of break dates: Perron-Bai breaks in the time-series of months of import cover.
- The basic results stand.
In Period 4, 93 of 126 industry indexes had a bet on appreciation.

With low volatility, large reserves and sustained one-way purchases by RBI, economic agents appear to have been convinced that there was a one-way bet.

Capital controls and financial markets were sufficiently conducive for achieving large changes in exchange rate exposure.
Thank you.