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Decomposition

We have the traditional idea

Yt = St + Ct + Tt + εt

St : Seasonal component

Ct : Cyclical component

Tt : Trend component

εt : Stochastic/unexplained component
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Types of seasonality

Remember the last discussion:

Stationarity: ARMA(p,q)

Non-stationarity:
I Trend stationarity (deterministic trend)
I Difference stationarity (stochastic trend) ARIMA(p,d,q)

Similarly we will have:

Stationarity: ARMA(p, q)(P,Q)s

Non-stationarity:
I Stochastic seasonality: ARIMA (p, d , q)(P,D,Q)s

I Deterministic seasonality: dummy variables
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Dummy variable

Definition (Dummy Variable)

D =

{
1 if A

0 if Ā

A can be:

Male (and then Ā = female)

Special event

...
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Deterministic seasonality

Adds dummy variables:

yt = α0 +
s−1∑
i=1

αiDi + βt + εt

Adds sines and cosines:

yt = α0 +

[T/2]∑
i=1

(αi cos(λi t) + γi sin(λi t)) + εt

With λi = 2πi
T i = 1, . . . , [T/2]
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Seasonal AR models
See:

xt = a4xt−4 + εt

Autocorrelation: spikes at lags 1, 1s, 2s,

γ(j) =

{
a
j/4
4 if j/4 ∈ N

0 if j/4 /∈ N

Define the pure AR seasonal model:

Yt = Φ1Yt−s + Φ2Yt−2s + . . .+ ΦPYt−Ps + εt

With polynomial:

Φs(x) = (1− Φ1Ls − Φ2L2s − . . .− ΦPLPs)

Proposition

It can be shown that the autocorrelation function is nonzero only at lags s,
2s, 3s
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Extending the ARMA model

Multiplicative way: ARMA(p, q)(P,Q)s

Φ(Ls)φ(L)yt = Θ(Ls)θ(L)εt

Multiplicative way: ARIMA(p, d , q)(P,D,Q)s

Φ(Ls)φ(L)∆d∆D
s yt = Θ(Ls)θ(L)εt
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Seasonal unit roots
Take the simple seasonal AR(4) model:

xt = a4xt−4 + εt

With a4 = 1
Its polynomial is (1− L4) and can be decomposed as:

(1− L)(1 + L)(1 + L2) = (1− L)(1 + L)(1− iL)(1 + iL)

It has the four roots:

1

-1

i

-i

So it is not stationary:

Long/infinite memory

variance increasing with the time
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seasonal AR process with φ4 = 1
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Seasonal differencing

remember:

Definition (Difference operator)

∆d = (1− L)d

Now:

Definition (Seasonal difference operator)

∆D
s = (1− Ls)D

Definition (Seasonal integration)

A series is said to be seasonaly integrated of order D if ∆Dyt is stationary.
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Box-Jenkins airline series (in log)
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Box-Jenkins airline model

Seasons
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airline series: ∆
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airline series: ∆

0.0 0.5 1.0 1.5 2.0 2.5

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

Series  dAirPassengers

Matthieu Stigler Matthieu.Stigler@gmail.com () Seasonality November 14, 2008 24 / 63



airline series: ∆12
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airline series: ∆12
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airline series: ∆∆12
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airline series: ∆∆12
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Box-Jenkins airline model

Box Jenkins use the sARIMA(0, 1, 1)(0, 1, 1)12 model:

∆∆12yt = (1− θL)(1−ΘL12)εt

Decomposing it gives:

yt − yt−1 − yt−12 − yt−13 = εt − θεt−1 −Θεt−12 − θΘεt−13

Note that after both differencing the series is:

Stationary

have autocorrelation only at lags 1,11,12 and 13
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Airline model

> seas <- (list(order = c(0, 1, 1), period = 12))

> BJ <- arima(log(AirPassengers), order = c(0, 1, 1), seasonal = seas)

> resBJ <- residuals(BJ)

> Box.test(resBJ, lag = 1, type = "Ljung")

Box-Ljung test

data: resBJ
X-squared = 0.0307, df = 1, p-value = 0.861

> Box.test(resBJ, lag = 12, type = "Ljung")

Box-Ljung test

data: resBJ
X-squared = 9.2333, df = 12, p-value = 0.6829
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Frequency analysis

We take an empirical approach here!

Definition (Sample periodogram)

ŝY (ω) = 1
2π

∑T−1
i=0 γj [cos(ωj)− i sin(ωj)]

Proposition (Equivalence 1)

ŝY (ω) = 1
2π

(
γ0 + 2

∑T−1
i=1 γj cos(ωj)

)
What does it show?

Which ω (the frequencies) do we take?

names

It seems that the periodogram is also called spectrum or spectral density.
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Frequencies of the sample periodogram

Take the frequencies as:

ωj =
2πj

T
j = i , . . . , [T/2]

Definition (period)

The period coresponding to the frequency omega is given by: 2π
ω

The period can be seen as the numbers of times units (months, quarters)
needed to accomplish a cycle.
Low frequencies have a big period and are seen as rather ”trend” elements.
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Decomposition of the variance

Proposition

γ̂0 =
∫ π
−π ŝY (ω)dω = 2

∫ π
0 ŝY (ω)dω

So
∫ ωj

−ωj
ŝY (ω)dω represents the portion of the variance of Y that could be

attributed to periodic random components with frequency less than or
equal to ωj .
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Hamilton example: Industrial production index
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Seasonal unit roots

The polynomial (1− L4) can be decomposed as:

(1− L)(1 + L)(1 + L2) = (1− L)(1 + L)(1− iL)(1 + iL)

It has the four roots 1,-1,i,-i and we can find their corresponding frequency!

Proposition

The frequency ω corresponding to a root is the argument of the root.

Definition

The argument of a complex number is the angle in the polar
representation and is given by: ω = cos−1(a/R) = sin−1(b/R), a is the
real part, b the imaginary and R the modulus.
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Seasonal unit root

Proposition

The number of cycles per year is given by Sω
2π

root f period Annual occurence

1 0 no no
-1 π 2 quarters 2
i,-i π/2,−π/2 4 quarters 1
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The HEGY test

The HEGY (1990) test decompose the polynomial complexically and runs
an auxilliary regression:

y4t = π1y1t−1 + π2y2t−1 + π3y3t−2 + π4y3t−1 + εt

As example y1t is (1 + L + L2 + L3)xt .
Thus one has the following hypotheses:

Nonseasonal root (1): π1 = 0

Seasonal bi-annual root (-1): π2 = 0

Seasonal annual root (i,-i): π3 = 0 ∩ π4 = 0

The tabulated distribution depends on whether there is
intercept/trend/seasonal dummy.
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HEGY for monthly series
The HEGY test has been extended for monthly series (12 roots!) by
Franses (1990) and Beaulieu and Miron (1993)

The roots are the same as HEGY (1,-1, i,-1) plus ±1/2(1±
√

3i),
±1/2(

√
3± i)

root freq cycles per year

1 π 6
i π/2 3
i −π/2 9

−1/2(1 +
√

3i) −2π/3 8

−1/2(1−
√

3i) 2π/3 4

1/2(1 +
√

3i) π/3 2

1/2(1−
√

3i) −π/3 10

−1/2(
√

3 + i) −5π/6 7

−1/2(
√

3− i) 5π/6 5

1/2(
√

3 + i) π/6 1

1/2(
√

3− i) −π/6 11
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HEGY tests with R

The HEGY test and its extension to monthly data ara available in R in:

> library(uroot)

> data(AirPassengers)

> lairp <- log(AirPassengers)

> test <- HEGY.test(wts = lairp, itsd = c(1, 1, c(1:11)), regvar = 0,

+ selectlags = list(mode = "bic", Pmax = 12))

> test@stats

Stat. p-value
tpi_1 -2.577797 0.1000000
tpi_2 -4.396433 0.0100000
Fpi_3:4 18.519107 0.1000000
Fpi_5:6 4.823309 0.0100000
Fpi_7:8 8.656624 0.1000000
Fpi_9:10 7.119685 0.0494419
Fpi_11:12 2.854972 0.0100000
Fpi_2:12 18.373828 NA
Fpi_1:12 19.336146 NA
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monthly HEGY test

The mechanical application of the seasonal difference filter is
likely to produce serious misspecification in many instances. The
evidence presented here indicates that unit roots are often absent
at some or all of the seasonal frequencies, so empirical
researchers should check for their presence (using procedures
such as the one discussed above) rather than imposing them at
all seasonal frequencies a priori.

Beaulieu, Miron (1993)
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Stationarity as a null

Canova and Hansen take opposite approach: H0 is stationarity, with
deterministic seasonality.
From:

yt = αyt−1 +
S−1∑
i=1

Ditβi + εt

The idea is (provided stationarity, i.e. |α| < 1 ) to test for instablity of the
βi parameters (see lecture 5) as the KPSS test does (lecture 4):

yt = αyt−1 +
S−1∑
i=1

Ditβit + εt

βit = βit−1 + ut

and test if Var(ut) = 0
The test can also be applied to only a subset of dummies.
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> CH.test(wts = AirPassengers, frec = c(1, 1, 1, 1, 1, 1), f0 = 1,

+ DetTr = FALSE)

------ - ------ ----
Canova & Hansen test
------ - ------ ----

Null hypothesis: Stationarity.
Alternative hypothesis: Unit root.
Frequency of the tested cycles: pi/6 , pi/3 , pi/2 , 2pi/3 , 5pi/6 , pi ,

L-statistic: 1.836
Lag truncation parameter: 13

Critical values:

0.10 0.05 0.025 0.01
2.49 2.75 2.99 3.27
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type of seasonality

Additive:
Xt = Ct + St + TDt + Ht + It

Multiplicative:
Xt = Ct × St × TDt × Ht × It

Where:

C is the trend-cycle component

S is the seasonal component

TD is trading-day effect

H is the holiday effect

I is the irregular component
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the specs

series{}
arima{}: ARIMA given by user

automdl{}: automatic choice of the ARIMA

check{}: print tests on the regARIMA

estimate {} print tests on the regARIMA

x11{}: the seasonal adjustment procedure
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X-12-ARIMA
The regARIMA option

Φ(Ls)φ(L)∆d∆D
s (yt −

∑
xit) = Θ(Ls)θ(L)εt

xi can be:

Constant/trend pattern:
I Constant if D = d = 0 (then equals mean of the series)
I Sort of trend if D, d 6= 0

Fixed seasonal pattern:
I seasonal dummies
I Sin-cos functions

Level shift (structural break)

Temporary change

External variable

Deterministic vs stochastic seasonality

If arg season is given, you can’t use seasonal differencing (i.e. D=0)
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X-12-ARIMA: ARIMA fitting

Estimation and identification can be carried out by following
well-established procedures that rely on examination of ACF and
PACF of yt and its differences.

If regARIMA provided: ACF and PACF are different, so other methodology.
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X-12-ARIMA: ARIMA estimation

Estimator provided: exact MLE.

Inference: it seems that no inference is made on ARIMA and regARIMA
for the variables added by the user, but can be extracted (see page 42),
you must use the spec check{}

Otherwise, one can use usual information criteria to select the model AIC,
AAIC, BIC, Hannan-Quin

p. 50: aictest argument of the regression and x11regression specs is used
to automatically decide for or against the inclusions of certain regressors
(see Sections 7.13 and 7.18 of the X-12-ARIMA Reference Manual).
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Spec check{}

The check spec is used to produce various diagnostic statistics using the
residuals from the fitted model. To check for autocorrelation,
X-12-ARIMA can produce:

ACFs and PACFs of the residuals (with standard errors)

Ljung and Box (1978) summary Q-statistics

basic descriptive statistics of the residuals

histogram of the standardized residuals
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The spec autmomdl{}

automdlprint = (none bestfivemdl autochoice) savelog = automodel
Model selection procedure is adapted from TRAMO

1 default model estimation: a default model is estimated, initial
outlier identification and regressor tests are performed, and residual
diagnostics are generated;

2 identification of differencing orders: empirical unit root tests are
performed to determine the orders

3 identification of ARMA model orders: an iterative procedure is
applied

4 comparison of identified model with default model: the identified
model is compared to the default model

5 final model checks: where the final model is checked for adequacy
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automdl: step 1

Test from the airline model:

trading day, Easter (AIC?)

user-defined regressors (AIC?)

const in regARIMA (t-test)

Ljung-Box test of the residuals

Model selected should perform better than this one.
Manual 3, page 70
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automdl: step 2 and 3

Step 2: identification of d,D Use empirical unit root tests: estimate
(200)(100)s and see if the roots of the AR polynomial are outside the unit
circle.
Step 3: identification of p,q,P,Q Multi-step BIC procedure
If model prefered is different than airline model, then make all tests (easter
day, user-defined var, LB stat)
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automdl: step 4

Compares with the airline model:

Number of outliers is less

Ljung-Box statistic is better

Some empirical rules

The program then tests to see if the preferred model is
acceptable. The confidence coefficient of the Ljung- Box Q
statistic is used as the criterion.
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automdl: step 5 final check

Checks:

If sum of AR is outside unit root circle

Is unit root in non-seasonal MA polynomial (still stationary but not
invertible)

If constant in model is significant (when not previously given)

If ARMA coefficients are significants (individually)
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R package forecast

Function auto.arima

Canova and Hansen (1995) test for D

Test as stationarity as null hypothesis (KPSS) for d
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R implementation

To run this Rnw file you will need:

Package uroot

Data file of Hamilton: Ham.txt (same folder as .Rnw file)

(Optional) File Sweave.sty which change output style: result is in
blue, R commands are smaller. Also in same folder as .Rnw file.
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